OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Comparison of two single-image phase-retrieval algorithms for in-line x-ray phase-contrast imaging

Matthieu N. Boone, Wouter Devulder, Manuel Dierick, Loes Brabant, Elin Pauwels, and Luc Van Hoorebeke  »View Author Affiliations


JOSA A, Vol. 29, Issue 12, pp. 2667-2672 (2012)
http://dx.doi.org/10.1364/JOSAA.29.002667


View Full Text Article

Enhanced HTML    Acrobat PDF (403 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The attenuation of x-rays in a material forms the basis of x-ray radiography and tomography. By measuring the transmission of the x-rays over a large amount of raypaths, the three-dimensional (3D) distribution of the x-ray linear attenuation coefficient can be reconstructed in a 3D volume. In x-ray microtomography (μCT), however, the x-ray refraction yields a significant signal in the transmission image and the 3D distribution of the refractive index can be reconstructed in a 3D volume. To do so, several methods exist, on both a hardware and software level. In this paper, we compare two similar software methods, the modified Bronnikov algorithm and the simultaneous phase-and-amplitude retrieval. The first method assumes a pure phase object, whereas the latter assumes a homogeneous object. Although these assumptions seem very restrictive, both methods have proven to yield good results on experimental data.

© 2012 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.3190) Image processing : Inverse problems
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

History
Original Manuscript: August 3, 2012
Revised Manuscript: October 26, 2012
Manuscript Accepted: October 28, 2012
Published: November 28, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Matthieu N. Boone, Wouter Devulder, Manuel Dierick, Loes Brabant, Elin Pauwels, and Luc Van Hoorebeke, "Comparison of two single-image phase-retrieval algorithms for in-line x-ray phase-contrast imaging," J. Opt. Soc. Am. A 29, 2667-2672 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-29-12-2667


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature (London) 373, 595–598 (1995). [CrossRef]
  2. P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133–146 (1996). [CrossRef]
  3. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335–338 (1996). [CrossRef]
  4. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006). [CrossRef]
  5. C. David, T. Weitkamp, F. Pfeiffer, A. Diaz, J. Bruder, T. Rohbeck, A. Groso, O. Bunk, M. Stampanoni, and P. Cloetens, “Hard x-ray phase imaging and tomography using a grating interferometer,” Spectrochim. Acta: Part B 62, 626–630 (2007). [CrossRef]
  6. S. A. McDonald, F. Marone, C. Hintermuller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, “Advanced phase-contrast imaging using a grating interferometer,” J. Synchrotron Radiat. 16, 562–572 (2009). [CrossRef]
  7. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyts, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometerresolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912–2914 (1999). [CrossRef]
  8. M. Langer, P. Cloetens, J. P. Guigay, and F. Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys. 35, 4556–4566 (2008). [CrossRef]
  9. P. Cloetens, M. Pateyron-Salom, J. Y. Buffire, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997). [CrossRef]
  10. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68, 2774–2782 (1997). [CrossRef]
  11. A. Peterzol, A. Olivo, L. Rigon, S. Pani, and D. Dreossi, “The effects of the imaging system on the validity limits of the ray-optical approach to phase contrast imaging,” Med. Phys. 32, 3617–3627 (2005). [CrossRef]
  12. C. M. Laperle, T. J. Hamilton, P. Wintermeyer, E. J. Walker, D. Shi, M. A. Anastasio, Z. Derdak, J. R. Wands, G. Diebold, and C. Rose-Petruck, “Low density contrast agents for x-ray phase contrast imaging: the use of ambient air for x-ray angiography of excised murine liver tissue,” Phys. Med. Biol. 53, 6911–6923 (2008). [CrossRef]
  13. E. M. Friis, P. R. Crane, K. R. Pedersen, S. Bengton, P. C. J. Donoghue, G. W. Grimm, and M. Stampanoni, “Phase-contrast x-ray microtomography links cretaceous seeds with gnetales and bennettitales,” Nature 450, 549–552 (2007). [CrossRef]
  14. P. Trtik, J. Dual, D. Keunecke, D. Mannes, P. Niemz, P. Stähli, A. Kaestner, A. Groso, and M. Stampanoni, “3d imaging of microstructure of spruce wood,” J. Struct. Biol. 159, 46–55 (2007). [CrossRef]
  15. P. Tafforeau and T. M. Smith, “Nondestructive imaging of hominoid dental microstructure using phase contrast x-ray synchrotron microtomography,” J. Hum. Evol. 54, 272–278 (2008). [CrossRef]
  16. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  17. A. V. Bronnikov, “Theory of quantitative phase-contrast computed tomography,” J. Opt. Soc. Am. A 19, 472–480 (2002). [CrossRef]
  18. A. V. Bronnikov, “Phase-contrast CT: fundamental theorem and fast image reconstruction algorithms,” Proc. SPIE 6318, 63180Q (2006). [CrossRef]
  19. A. Groso, R. Abela, and M. Stampanoni, “Implementation of a fast method for high resolution phase contrast tomography,” Opt. Express 14, 8103–8110 (2006). [CrossRef]
  20. D. M. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002). [CrossRef]
  21. S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289–2302 (2003). [CrossRef]
  22. T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first Born-and-Rytov-type approximations,” Appl. Opt. 43, 2418–2430 (2004). [CrossRef]
  23. X. Wu, H. Liu, and A. Yan, “X-ray phase-attenuation duality and phase retrieval,” Opt. Lett. 30, 379–381 (2005). [CrossRef]
  24. Y. De Witte, M. N. Boone, J. Vlassenbroeck, M. Dierick, and L. Van Hoorebeke, “Bronnikov-aided correction for x-ray computed tomography,” J. Opt. Soc. Am. A 26, 890–894 (2009). [CrossRef]
  25. A. Burvall, U. Lundstrm, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retreival in x-ray phase-contrast imaging suitable for tomography,” Opt. Express 19, 10359–10376 (2011). [CrossRef]
  26. M. N. Boone, Y. De Witte, M. Dierick, J. Van den Bulcke, J. Vlassenbroeck, and L. Van Hoorebeke, “Practical use of the modified Bronnikov algorithm in micro-CT,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 1182–1186 (2009). [CrossRef]
  27. T. Weitkamp, D. Haas, D. Wegrzynek, and A. Rack, “Ankaphase: software for single-distance phase retrieval from inline x-ray phase-contrast radiographs,” J. Synchrotron. Radiat. 18, 617–629 (2011). [CrossRef]
  28. R. C. Chen, H. L. Xie, L. Rigon, R. Longo, E. Castelli, and T. Q. Xiao, “Phase retrieval in quantitative x-ray microtomography with a single sample-to-detector distance,” Opt. Lett. 36, 1719–1721 (2011). [CrossRef]
  29. A. Almeida, S. Possemiers, M. N. Boone, T. De Beer, T. Quinten, L. Van Hoorebeke, J.-P. Remon, and C. Vervaet, “Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion,” Eur. J. Pharm. Biopharm. 77, 297–305 (2011). [CrossRef]
  30. D. Derome, M. Griffa, M. Koebel, and J. Carmeliet, “Hysteretic swelling of wood at cellular scale probed by phase-contrast x-ray tomography,” J. Struct. Biol. 173, 180–190 (2011). [CrossRef]
  31. J. Vlassenbroeck, M. Dierick, B. Masschaele, V. Cnudde, L. Van Hoorebeke, and P. Jacobs, “Software tools for quantification of x-ray microtomography at the UGCT,” Nucl. Instrum. Methods Phys. Res.: Sect. A 580, 442–445 (2007). [CrossRef]
  32. B. D. Arhatari, W. P. Gates, N. Estiaghi, and A. G. Peele, “Phase retrieval tomography in the presence of noise,” J. Appl. Phys. 107, 034904 (2010). [CrossRef]
  33. M. N. Boone, Y. De Witte, M. Dierick, A. Almeida, and L. Van Hoorebeke, “Improved signal-to-noise ratio in laboratory-based phase contrast tomography,” Microsc. Microanal. 18, 399–405 (2012). [CrossRef]
  34. Y. De Witte, “Improved and practically feasible reconstruction methods for high resolution x-ray tomography,” Ph.D. thesis (Ghent University, 2010).
  35. B. Masschaele, V. Cnudde, M. Dierick, P. Jacobs, L. Van Hoorebeke, and J. Vlassenbroeck, “UGCT: new x-ray radiography and tomography facility,” Nucl. Instrum. Methods Phys. Res. Sect. A 580, 266–269 (2007). [CrossRef]
  36. M. N. Boone, J. Vlassenbroeck, S. Peetermans, D. Van Loo, M. Dierick, and L. Van Hoorebeke, “Secondary radiation in transmission-type x-ray tubes: simulation, practical issues and solution in the context of x-ray microtomography,” Nucl. Instrum. Methods Phys. Res. Sect. A 661, 7–12 (2012). [CrossRef]
  37. X. Wu and H. Liu, “A general theoretical formalism for x-ray phase contrast imaging,” J. X-ray Sci. Technol. 11, 33–42 (2003).
  38. T. E. Gureyev and S. W. Wilkins, “On x-ray phase imaging with a point source,” J. Opt. Soc. Am. A 15, 579–585 (1998). [CrossRef]
  39. H. Derluyn, M. Griffa, D. Mannes, I. Jerjen, J. Dewanckele, P. Vontobel, A. Sheppard, M. N. Boone, D. Derome, V. Cnudde, E. Lehmann, and J. Carmeliet, “Probing salt crystallization damage mechanisms in porous limestone with neutron radiography and x-ray tomography,” in 5th International Building Physics Conference (2012), pp. 95–102.
  40. M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Bhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imaging: the SLS experience,” Proc. SPIE 6318, 63180M (2006). [CrossRef]
  41. F. Marone, C. Hintermuller, S. A. McDonald, R. Abela, G. Mikuljan, A. Isenegger, and M. Stampanoni, “X-ray tomographic microscopy at TOMCAT,” J. Phys.: Conf. Ser. 186, 012042 (2009). [CrossRef]
  42. NIST, “X-ray form factor, attenuation and scattering tables,” http://physics.nist.gov/PhysRefData/FFast/html/form.html .
  43. M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D x-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18, 6423–6436 (2010). [CrossRef]
  44. M. A. Beltran, D. M. Paganin, K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 7353–7369 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited