OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Color tuning in alert macaque V1 assessed with fMRI and single-unit recording shows a bias toward daylight colors

Rosa Lafer-Sousa, Yang O. Liu, Luis Lafer-Sousa, Michael C. Wiest, and Bevil R. Conway  »View Author Affiliations

JOSA A, Vol. 29, Issue 5, pp. 657-670 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2096 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Colors defined by the two intermediate directions in color space, “orange–cyan” and “lime–magenta,” elicit the same spatiotemporal average response from the two cardinal chromatic channels in the lateral geniculate nucleus (LGN). While we found LGN functional magnetic resonance imaging (fMRI) responses to these pairs of colors were statistically indistinguishable, primary visual cortex (V1) fMRI responses were stronger to orange–cyan. Moreover, linear combinations of single-cell responses to cone-isolating stimuli of V1 cone-opponent cells also yielded stronger predicted responses to orange–cyan over lime–magenta, suggesting these neurons underlie the fMRI result. These observations are consistent with the hypothesis that V1 recombines LGN signals into “higher-order” mechanisms tuned to noncardinal color directions. In light of work showing that natural images and daylight samples are biased toward orange–cyan, our findings further suggest that V1 is adapted to daylight. V1, especially double-opponent cells, may function to extract spatial information from color boundaries correlated with scene-structure cues, such as shadows lit by ambient blue sky juxtaposed with surfaces reflecting sunshine.

© 2012 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5380) Vision, color, and visual optics : Physiology

ToC Category:
Color Vision

Original Manuscript: September 27, 2011
Revised Manuscript: January 27, 2012
Manuscript Accepted: January 28, 2012
Published: April 9, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Rosa Lafer-Sousa, Yang O. Liu, Luis Lafer-Sousa, Michael C. Wiest, and Bevil R. Conway, "Color tuning in alert macaque V1 assessed with fMRI and single-unit recording shows a bias toward daylight colors," J. Opt. Soc. Am. A 29, 657-670 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982). [CrossRef]
  2. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  3. E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vision 10(5):25, 1–17 (2010). [CrossRef]
  4. D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef]
  5. B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010). [CrossRef]
  6. R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009). [CrossRef]
  7. T. Hansen, Department of General and Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel-Strasse 10 F1, Giessen 35394 (personal communication, 2011).
  8. Q. Zaidi, Graduate Center for Vision Research, State University of New York, College of Optometry, 33 West 42nd Street, New York, New York 10036 (personal communication, 2011).
  9. D. B. Judd, “Report of U. S. secretariat committee on colorimetry and artificial daylight,” in Vol. 1 of Proceedings of the Twelfth Session of the CIE (Bureau Central de la CIE, 1951), p. 11.
  10. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).
  11. T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8(1):2, 1–19 (2008).
  12. B. R. Conway and D. Y. Tsao, “Color architecture in alert macaque cortex revealed by fMRI,” Cereb. Cortex 16, 1604–1613 (2005). [CrossRef]
  13. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975). [CrossRef]
  14. G. Paxinos, Huang X-F, and A. W. Toga, The Rhesus Monkey Brain In Stereotaxic Coordinates (Academic, 2000).
  15. R. W. Cox and J. S. Hyde, “Software tools for analysis and visualization of fMRI data,” NMR Biomed. 10, 171–178 (1997). [CrossRef]
  16. B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007). [CrossRef]
  17. D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003). [CrossRef]
  18. J. Winawer, H. Horiguchi, R. A. Sayres, K. Amano, and B. A. Wandell, “Mapping hV4 and ventral occipital cortex: the venous eclipse,” J. Vision 10(5):1, 1–22 (2010). [CrossRef]
  19. G. J. Brouwer and D. J. Heeger, “Decoding and reconstructing color from responses in human visual cortex,” J. Neurosci. 29, 13992–14003 (2009). [CrossRef]
  20. B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).
  21. B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006). [CrossRef]
  22. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000). [CrossRef]
  23. B. R. Conway, D. H. Hubel, and M. S. Livingstone, “Color contrast in macaque V1,” Cereb. Cortex 12, 915–925 (2002). [CrossRef]
  24. S. G. Solomon and P. Lennie, “Chromatic gain controls in visual cortical neurons,” J. Neurosci. 25, 4779–4792 (2005). [CrossRef]
  25. T. Wachtler, T. J. Sejnowski, and T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003). [CrossRef]
  26. G. D. Horwitz, E. J. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007). [CrossRef]
  27. S. G. Solomon and P. Lennie, “The machinery of colour vision,” Nat. Rev. Neurosci. 8, 276–286 (2007). [CrossRef]
  28. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008). [CrossRef]
  29. C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vis. Res. 17, 1083–1089 (1977). [CrossRef]
  30. D. J. Heeger, A. C. Huk, W. S. Geisler, and D. G. Albrecht, “Spikes versus BOLD: what does neuroimaging tell us about neuronal activity?” Nat. Neurosci. 3, 631–633 (2000). [CrossRef]
  31. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).
  32. B. R. Conway, “Color vision, cones, and color-coding in the cortex,” Neuroscientist 15, 274–290 (2009). [CrossRef]
  33. R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, and E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vis. Res. 14, 53–67(1974). [CrossRef]
  34. D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
  35. D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).
  36. H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2005). [CrossRef]
  37. J. Hernandez-Andres, J. Romero, J. L. Nieves, and R. L. Lee, “Color and spectral analysis of daylight in southern Europe,” J. Opt. Soc. Am. A 18, 1325–1335 (2001). [CrossRef]
  38. N. W. Daw, “Goldfish retina: organization for simultaneous color contrast,” Science 158, 942–944 (1967). [CrossRef]
  39. A. Hurlbert and K. Wolf, “Color contrast: a contributory mechanism to color constancy,” Prog. Brain Res. 144, 147–160 (2004). [CrossRef]
  40. M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997). [CrossRef]
  41. D. Bimler, “Flicker between equal-luminance colors examined with multidimensional scaling,” J. Opt. Soc. Am. A 27, 523–531(2010). [CrossRef]
  42. P. Sciretta, “Orange/blue contrast in movie posters,” 2009, http://ohnotheydidnt.livejournal.com/41879586.html .
  43. I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010). [CrossRef]
  44. J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992). [CrossRef]
  45. A. L. Nagy, R. T. Eskew, and R. M. Boynton, “Analysis of color-matching ellipses in a cone-excitation space,” J. Opt. Soc. Am. A 4, 756–768 (1987). [CrossRef]
  46. K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vision 10(13):17, 1–32 (2010). [CrossRef]
  47. M. V. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10(1):4, 1–9 (2010). [CrossRef]
  48. M. A. Webster, “Calibrating color vision,” Curr. Biol. 19, R150–R152 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited