OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

X-ray dark-field imaging modeling

W. Cong, F. Pfeiffer, M. Bech, and G. Wang  »View Author Affiliations


JOSA A, Vol. 29, Issue 6, pp. 908-912 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000908


View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dark-field images are formed from x-ray small-angle scattering signals. The small-angle scattering signals are particularly sensitive to structural variation and density fluctuation on a length scale of several tens to hundreds of nanometers, offering a unique contrast mechanism to reveal subtle structural features of an object. In this study, based on the principle of energy conservation, we develop a physical model to describe the relationship between x-ray small-angle scattering coefficients of an object and dark-field intensity images. This model can be used to reconstruct volumetric x-ray small-angle scattering images of an object using classical tomographic algorithms. We also establish a relationship between the small-angle scattering intensity and the visibility function measured with x-ray grating imaging. The numerical simulations and phantom experiments have demonstrated the accuracy and practicability of the proposed model.

© 2012 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

History
Original Manuscript: January 5, 2012
Revised Manuscript: February 17, 2012
Manuscript Accepted: February 19, 2012
Published: May 18, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
W. Cong, F. Pfeiffer, M. Bech, and G. Wang, "X-ray dark-field imaging modeling," J. Opt. Soc. Am. A 29, 908-912 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-29-6-908


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996). [CrossRef]
  2. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
  3. D. I. Svergun and M. H. J. Koch, “Small-angle scattering studies of biological macromolecules in solution,” Rep. Prog. Phys. 66, 1735–1782 (2003). [CrossRef]
  4. V. Changizi, S. Wilkinson, C. J. Hall, and G. Grossmann, “A study of the effect of formalin preservation on normal and cancerous breast tissues using small angle X-ray scattering (SAXS),” Radiat. Phys. Chem. 75, 932–935 (2006). [CrossRef]
  5. M. Fernández, J. Keyriläinen, R. Serimaa, M. Torkkeli, M.-L. Karjalainen-Lindsberg, M. Tenhunen, W. Thomlinson, V. Urban, and P. Suortti, “Small-angle X-ray scattering studies of human breast tissue samples,” Phys. Med. Biol. 47, 577–592 (2002). [CrossRef]
  6. S. Sidhu, G. Falzon, S. A. Hart, J. G. Fox, R. A. Lewis, and K. K. W. Siu, “Classification of breast tissue using a laboratory system for small-angle x-ray scattering (SAXS),” Phys. Med. Biol. 56, 6779–6791 (2011). [CrossRef]
  7. C. G. Schroer, M. Kuhlmann, S. V. Roth, R. Gehrke, N. Stribeck, A. Almendarez-Camarillo, and B. Lengeler, “Mapping the local nanostructure inside a specimen by tomographic small-angle x-ray scattering,” Appl. Phys. Lett. 88, 164102 (2006). [CrossRef]
  8. J. M. Feldkamp, M. Kuhlmann, S. V. Roth, A. Timmann, R. Gehrke, I. Shakhverdova, P. Paufler, S. K. Filatov, R. S. Bubnova, and C. G. Schroer, “Recent developments in tomographic small-angle X-ray scattering,” Phys. Status Solidi A 206, 1723–1726 (2009). [CrossRef]
  9. A. Harding, J.- P. Schlomka, and G. Harding, “Simulations and experimental feasibility study of fan-beam coherent scatter CT,” Proc. SPIE 4786, 202–209 (2002).
  10. G. Harding and J. Kosanetzky, “Status and outlook of coherent-x-ray scatter imaging,” J. Opt. Soc. Am. A 4, 933–944 (1987). [CrossRef]
  11. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mat. 7, 134–137 (2008). [CrossRef]
  12. G. Chen, J. Zambelli, K. Li, N. Bevins, and Z. Qi, “Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography,” Med. Phys. 38, 584–588 (2011). [CrossRef]
  13. X. Tang, Y. Yang, and S. Tang, “Characterization of imaging performance in differential phase contrast CT compared with the conventional CT—noise power spectrum NPS(k),” Med. Phys. 38, 4386–4395 (2011). [CrossRef]
  14. Z. Wang, K. Kang, Z. Huang, and Z. Chen, “Quantitative grating-based x-ray dark-field computed tomography,” Appl. Phys. Lett. 95, 094105 (2009). [CrossRef]
  15. G. Chen, N. Bevins, J. Zambelli, and Z. Qi, “Small-angle scattering computed tomography (SAS-CT) using a Talbot-Lau interferometer and a rotating anode x-ray tube: theory and experiments,” Opt. Express 18, 12960–12970(2010). [CrossRef]
  16. M. Bech, O. Bunk, T. Donath, R. Feidenhans’l, C. David, and F. Pfeiffer, “Quantitative x-ray dark-field computed tomography,” Phys. Med. Biol. 55, 5529–5539 (2010). [CrossRef]
  17. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  18. W. Cong and G. Wang, “Analytic model for x-ray dark-field CT,” presented at The 11th International Meeting on Fully Three-dimensional Image Reconstruction in Radiology and Nuclear Medicine, Potsdam, Germany, 2011.
  19. A. C. Kak and M. Slane, Principles of Computerized Tomographic Imaging (IEEE, 1988).
  20. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006). [CrossRef]
  21. J. Zambelli, N. Bevins, Z. Qi, and GH. Chen, “Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT,” Med. Phys. 37, 2473–2479 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited