OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Optical advantages and function of multifocal spherical fish lenses

Yakir Gagnon, Bo Söderberg, and Ronald Kröger  »View Author Affiliations


JOSA A, Vol. 29, Issue 9, pp. 1786-1793 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001786


View Full Text Article

Acrobat PDF (1346 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spherical crystalline lenses in the eyes of many fish species are well-suited models for studies on how natural selection has influenced the evolution of the optical system. Many of these lenses exhibit multiple focal lengths when illuminated with monochromatic light. Similar multifocality is present in a majority of vertebrate eyes, and it is assumed to compensate for the defocusing effect of longitudinal chromatic aberration. In order to identify potential optical advantages of multifocal lenses, we studied their information transfer capacity by computer modeling. We investigated four lens types: the lens of Astatotilapia burtoni, an African cichlid fish species, an equivalent monofocal lens, and two artificial multifocal lenses. These lenses were combined with three detector arrays of different spectral properties: the cone photoreceptor system of A. burtoni and two artificial arrays. The optical properties compared between the lenses were longitudinal spherical aberration curves, point spread functions, modulation transfer functions, and imaging characteristics. The multifocal lenses had a better balance between spatial and spectral information than the monofocal lenses. Additionally, the lens and detector array had to be matched to each other for optimal function.

© 2012 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1070) Vision, color, and visual optics : Vision - acuity

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: April 25, 2012
Revised Manuscript: June 26, 2012
Manuscript Accepted: July 2, 2012
Published: August 8, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Yakir Gagnon, Bo Söderberg, and Ronald Kröger, "Optical advantages and function of multifocal spherical fish lenses," J. Opt. Soc. Am. A 29, 1786-1793 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-29-9-1786


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. F. Land and D. E. Nilsson, Animal Eyes, Animal Biology Series (Oxford, 2002).
  2. T. Mandelman and J. G. Sivak, “Longitudinal chromatic aberration of the vertebrate eye,” Vis. Res. 23, 1555–1559 (1983). [CrossRef]
  3. L. Matthiessen, “Beiträge zur dioptrik der kristalllinse,” X. Zeitschrift für vergleichende Augenheilkunde 7, 102–146 (1893).
  4. R. J. Pumphrey, Concerning Vision (Cambridge University, 1961), pp. 193–208.
  5. J. G. Sivak and C. A. Luer, “Optical development of the ocular lens of an elasmobranch Raja eglanteria,” Vis. Res. 31, 373–382 (1991). [CrossRef]
  6. G. L. Walls, The Vertebrate Eye and its Adaptive Radiation (Cranbrook, 1964).
  7. J. Maxwell, “Some solutions of problems 2,” Cambridge Dublin Math. J. 8, 188–195 (1854).
  8. R. H. H. Kröger, K. A. Fritsches, and E. J. Warrant, “Lens optical properties in the eyes of large marine predatory teleosts,” J. Comp. Physiol. A 195, 175–182 (2009). [CrossRef]
  9. L. Matthiessen, “Ueber die beziehungen, welche zwischen dem brechungsindex des kerncentrums der krystalllinse und den dimensionen des auges bestehen,” Pflüger’s Archiv. 27, 510–523 (1882).
  10. R. H. H. Kröger, M. C. W. Campbell, R. D. Fernald, and H. J. Wagner, “Multifocal lenses compensate for chromatic defocus in vertebrate eyes,” J. Comp. Physiol. A 184, 361–369 (1999). [CrossRef]
  11. B. Karpestam, J. Gustafsson, N. Shashar, G. Katzir, and R. H. H. Kröger, “Multifocal lenses in coral reef fishes,” J. Exp. Biol. 210, 2923–2931 (2007). [CrossRef]
  12. P. E. Malkki, E. Löfblad, and R. H. H. Kröger, “Species-specific differences in the optical properties of crystalline lenses of fishes,” in ARVO Annual Meeting Abstract Search and Program Planner 2003 (2003), p. 3483.
  13. J. M. Schartau, B. Sjögreen, Y. L. Gagnon, and R. H. H. Kröger, “Optical plasticity in the crystalline lenses of the cichlid fish Aequidens pulcher,” Curr. Biol. 19, 122–126 (2009). [CrossRef]
  14. F. D. Hanke, R. H. H. Kröger, U. Siebert, and G. Dehnhardt, “Multifocal lenses in a monochromat: the harbour seal,” J. Exp. Biol. 211, 3315–3322 (2008). [CrossRef]
  15. O. E. Lind, A. Kelber, and R. H. H. Kröger, “Multifocal optical systems and pupil dynamics in birds,” J. Exp. Biol. 211, 2752–2758 (2008). [CrossRef]
  16. T. Malmström and R. H. H. Kröger, “Pupil shapes and lens optics in the eyes of terrestrial vertebrates,” J. Exp. Biol. 209, 18–25 (2006). [CrossRef]
  17. Y. L. Gagnon, B. Söderberg, and R. H. H. Kröger, “Effects of the peripheral layers on the optical properties of spherical fish lenses,” J. Opt. Soc. Am. A 25, 2468–2475 (2008). [CrossRef]
  18. R. H. H. Kröger, M. C. W. Campbell, R. Munger, and R. D. Fernald, “Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish Haplochromis burtoni,” Vis. Res. 34, 1815–1822 (1994). [CrossRef]
  19. Y. L. Gagnon, R. H. H. Kröger, and B. Söderberg, “Adjusting a light dispersion model to fit measurements from vertebrate ocular media as well as ray-tracing in fish lenses,” Vis. Res. 50, 850–853 (2010). [CrossRef]
  20. R. H. H. Kröger and M. C. W. Campbell, “Dispersion and longitudinal chromatic aberration of the crystalline lens of the African cichlid fish Haplochromis burtoni,” J. Opt. Soc. Am. A 13, 2341–2347 (1996). [CrossRef]
  21. M. C. W. Campbell, “Measurement of refractive index in an intact crystalline lens,” Vis. Res. 24, 409–415 (1984). [CrossRef]
  22. M. C. W. Campbell and P. J. Sands, “Optical quality during crystalline lens growth,” Nature 312, 291–292 (1984). [CrossRef]
  23. B. K. Pierscionek, “Nondestructive method of constructing 3-dimensional gradient index models for crystalline lenses 1. theory and experiment,” Am. J. Optom. Phys. Opt. 65, 481–491 (1988). [CrossRef]
  24. B. K. Pierscionek, “Refractive index of the human lens surface measured with an optic fibre sensor,” Ophthalmic Res. 26, 32–35 (1994). [CrossRef]
  25. B. K. Pierscionek, “The refractive index along the optic axis of the bovine lens,” Eye 9, 776–782 (1995). [CrossRef]
  26. B. K. Pierscionek and R. C. Augusteyn, “The refractive index and protein distribution in the blue eye trevally lens,” J. Am. Optometric Assoc. 66, 739–43 (1995).
  27. A. Fletcher, T. Murphy, and A. Young, “Solutions of two optical problems,” Proc. R. Soc. A 223, 216–225 (1954). [CrossRef]
  28. P. L. Chu, “Nondestructive measurement of index profile of an optical-fibre preform,” Electron. Lett. 13, 736–738(1977). [CrossRef]
  29. K. F. Barrell and C. Pask, “Nondestructive index profile measurement of noncircular optical fibre preforms,” Opt. Commun. 27, 230–234 (1978). [CrossRef]
  30. L. N. Trefethen, N. Hale, R. B. Platte, T. A. Driscoll, and R. Pachón, Chebfun version 3. Oxford University. http://www.maths.ox.ac.uk/chebfun/ (2009).
  31. R. D. Fernald and P. A. Liebman, “Visual receptor pigments in the African cichlid fish Haplochromis burtoni,” Vis. Res. 20, 857–864 (1980). [CrossRef]
  32. J. K. Lein, “Hyperspectral sensing,” in Environmental Sensing: Analytical Techniques for Earth Observation (Springer, 2012), p. 213.
  33. N. J. Marshall, K. Jennings, W. N. McFarland, E. R. Loew, G. S. Losey, and W. L. Montgomery, “Visual biology of Hawaiian coral reef fishes. II. Colors of Hawaiian coral reef fish,” Am. Soc. Ichthyol. Herpetol. 3, 455–466 (2003).
  34. V. I. Govardovskii, N. Fyhrquist, T. O. M. Reuter, D. G. Kuzmin, and K. Donner, “In search of the visual pigment template,” Vis. Neurosci. 17, 509–528 (2000). [CrossRef]
  35. E. Warrant and D. Nilsson, “Absorption of white light in photoreceptors,” Vis. Res. 38, 195–207 (1998). [CrossRef]
  36. J. Stark and W. Fitzgerald, “An alternative algorithm for adaptive histogram equalization,” Graph. Models Image Process. 58, 180–185 (1996).
  37. P. E. Malkki and R. H. H. Kröger, “Visualization of chromatic correction of fish lenses by multiple focal lengths,” J. Opt. A 7, 691–700 (2005). [CrossRef]
  38. O. S. E. Gustafsson, S. P. Collin, and R. H. H. Kröger, “Early evolution of multifocal optics for well-focused colour vision in vertebrates,” J. Exp. Biol. 211, 1559–1564 (2008). [CrossRef]
  39. O. S. Gustafsson, P. Ekström, and R. H. Kröger, “A fibrous membrane suspends the multifocal lens in the eyes of lampreys and African lungfishes,” J. Morphol. 271, 980–989 (2010).
  40. R. H. H. Kröger, “Physiological optics in fishes,” in Encyclopedia of Fish Physiology: From Genome to Environment (Elsevier, 2011) pp. 102–109.
  41. L. S. V. Roth, L. Lundström, A. Kelber, R. H. H. Kröger, and P. Unsbo, “The pupils and optical systems of gecko eyes,” J. Vision 9(3): 27, 1–11 (2009). [CrossRef]
  42. R. H. H. Kröger, “Anti-aliasing features in fish retina,” Investig. Ophthalmol. Vis. Sci. 45, 2785 (2004).
  43. R. Wehner, “‘matched filters’—neural models of the external world,” J. Comp. Physiol. A 161, 511–531 (1987). [CrossRef]
  44. J. N. Lythgoe, W. R. A. Muntz, J. C. Partridge, J. Shand, and D. M. B. Williams, “The ecology of the visual pigments of snappers (Lutjanidae) on the great barrier reef,” J. Comp. Physiol. A 174, 461–467 (1994). [CrossRef]
  45. J. Bowmaker, V. Govardovskii, S. Shukolyukov, J. L. Zueva, D. Hunt, V. G. Sideleva, and O. G. Smirnova, “Visual pigments and the photic environment: the cottoid fish of Lake Baikal,” Vis. Res. 34, 591–605 (1994). [CrossRef]
  46. J. W. Parry, K. L. Carleton, T. Spady, A. Carboo, D. M. Hunt, and J. K. Bowmaker, “Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids,” Curr. Biol. 15, 1734–1739 (2005). [CrossRef]
  47. J. K. Bowmaker and D. M. Hunt, “Evolution of vertebrate visual pigments,” Curr. Biol. 16, R484–R489 (2006). [CrossRef]
  48. Y. Shichida and T. Matsuyama, “Evolution of opsins and phototransduction,” Phil. Trans. R. Soc. B 364, 2881–2895 (2009). [CrossRef]
  49. A. E. Trezise and S. P. Collin, “Opsins: evolution in waiting,” Curr. Biol. 15R794–R796 (2005). [CrossRef]
  50. S. Yokoyama, “Molecular evolution of vertebrate visual pigments,” Prog. Retinal Eye Res. 19, 385–419 (2000). [CrossRef]
  51. K. E. O’Quin, C. M. Hofmann, H. A. Hofmann, and K. L. Carleton, “Parallel evolution of opsin gene expression in African cichlid fishes,” Mol. Biol. Evol. 27, 2839–2854 (2010). [CrossRef]
  52. R. H. H. Kröger, M. C. W. Campbell, and R. D. Fernald, “The development of the crystalline lens is sensitive to visual input in the African cichlid fish, Haplochromis burtoni,” Vis. Res. 41, 549–559 (2001). [CrossRef]
  53. J. M. Schartau, R. H. H. Kröger, and B. Sjögreen, “Short-term culturing of teleost crystalline lenses combined with high-resultotion optical measurements,” Cytotechnology 62, 167–174(2010). [CrossRef]
  54. J. M. Schartau, R. H. H. Kröger, and B. Sjögreen, “Dopamine induces optical changes in the cichlid fish lens,” PLoS ONE 5, e10402 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited