OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 4 — Apr. 12, 2006

Homogenization of metamaterials by field averaging (invited paper)

David R. Smith and John B. Pendry  »View Author Affiliations


JOSA B, Vol. 23, Issue 3, pp. 391-403 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000391


View Full Text Article

Enhanced HTML    Acrobat PDF (535 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Over the past several years, metamaterials have been introduced and rapidly been adopted as a means of achieving unique electromagnetic material response. In metamaterials, artificially structured—often periodically positioned—inclusions replace the atoms and molecules of conventional materials. The scale of these inclusions is smaller than that of the electromagnetic wavelength of interest, so that a homogenized description applies. We present a homogenization technique in which macroscopic fields are determined via averaging the local fields obtained from a full-wave electromagnetic simulation or analytical calculation. The field-averaging method can be applied to homogenize any periodic structure with unit cells having inclusions of arbitrary geometry and material. By analyzing the dispersion diagrams and retrieved parameters found by field averaging, we review the properties of several basic metamaterial structures.

© 2006 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.1190) Materials : Anisotropic optical materials
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation

ToC Category:
Metamaterials

History
Original Manuscript: July 19, 2005
Manuscript Accepted: August 21, 2005

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

Citation
David R. Smith and John B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," J. Opt. Soc. Am. B 23, 391-403 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-23-3-391


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. M. I. Saadoun and N. Engheta, "A reciprocal phase shifter using novel pseudochiral or omega-medium," Microwave Opt. Technol. Lett. 5, 184-188 (1992). [CrossRef]
  2. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).
  3. W.S.Weiglhofer and A.Lakhtakia, eds., Introduction to Complex Mediums for Optics and Electromagnetic (SPIE, 2003). [CrossRef]
  4. R. M. Walser, "Electromagnetic metamaterials," in Complex Mediums II: Beyond Linear Isotropic Dielectrics, A. Lakhtakia, W. S. Weiglhofer, and I. J. Hodgkinson, eds., Proc. SPIE 4467, 1-15 (2001). [CrossRef]
  5. A. Sihvola, "Electromagnetic emergence in metamaterials," in Advances in Electromagnetics of Complex Media and Metamaterials, S.Zouhdi, A.Sihvola, and M.Arsalane, eds., Vol. 89 of NATO Science Series II: Mathematics, Physics, and Chemistry (Kluwer Academic, 2003), pp. 3-17. [CrossRef]
  6. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsi and µ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  7. J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37-43 (2004). [CrossRef]
  8. D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  9. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  10. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  11. P. Markos and C. M. Soukoulis, "Numerical studies of left-handed materials and arrays of split ring resonators," Phys. Rev. E 65, 036622 (2002). [CrossRef]
  12. M. Bayindir, K. Aydin, E. Ozbay, P. Markos, and C. M. Soukoulis, "Transmission properties of composite metamaterials in free space," Appl. Phys. Lett. 81, 120-122 (2002). [CrossRef]
  13. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  14. P. F. Loschialpo, D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, "Electromagnetic waves focused by a negative-index planar lens," Phys. Rev. E 67, 025602 (2003). [CrossRef]
  15. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003). [CrossRef] [PubMed]
  16. R. W. Ziolkowski, "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag. 51, 1516-1529 (2003). [CrossRef]
  17. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004). [CrossRef] [PubMed]
  18. V. M. Shalaev, "Electromagnetic properties of small-particle composites," Phys. Rep. 272, 61-137 (1996). [CrossRef]
  19. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002). [CrossRef]
  20. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  21. J. B. Pendry, "Calculating photonic band structure," J. Phys. Condens. Matter 8, 1085-1108 (1996). [CrossRef]
  22. D. J. Bergman, "The dielectric constant of a composite material—a problem in classical physics," Phys. Rep. 9, 377-407 (1978). [CrossRef]
  23. D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000). [CrossRef]
  24. J. A. Kong, Electromagnetic Wave Theory, 2nd ed. (Wiley, 1990), Sec. 2.6.
  25. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065602 (2003). [CrossRef]
  26. S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, "Wire media with negative effective permittivity: a quasi-static model," Microwave Opt. Technol. Lett. 35, 47-51 (2002). [CrossRef]
  27. P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, "Strong spatial dispersion in wire media in the very large wavelength limit," Phys. Rev. B 67, 113103 (2003). [CrossRef]
  28. A. L. Pokrovsky, "Analytical and numerical studies of wire-mesh metallic photonic crystals," Phys. Rev. B 69, 195108 (2004). [CrossRef]
  29. C. R. Simovski and P. A. Belov, "Low-frequency spatial dispersion in wire media," Phys. Rev. E 70, 046616 (2004). [CrossRef]
  30. M. G. Silveirinha and C. A. Fernandes, "Homogenization of 3-D-connected and nonconnected wire metamaterials," IEEE Trans. Microwave Theory Tech. 53, 1418-1430 (2005). [CrossRef]
  31. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B 65, 144440 (2002). [CrossRef]
  32. R. Marqués, F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments," IEEE Trans. Antennas Propag. 51, 2572-2581 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited