OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 7 — Jul. 27, 2011

Theory of optical second-harmonic and sum-frequency scattering from arbitrarily shaped particles

Alex G. F. de Beer, Sylvie Roke, and Jerry I. Dadap  »View Author Affiliations

JOSA B, Vol. 28, Issue 6, pp. 1374-1384 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (733 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical framework for the generation and scattering of second-harmonic and sum-frequency light from the surface of particles of arbitrary shape in the limit of low index of refraction contrast. For homogeneous and isotropic surfaces, light scattering can be described by a finite set of scattering functions. Selection rules regarding these scattering functions are presented. We also find that the scattering functions associated with achiral and chiral surfaces are directly related to the bulk and surface linear optical form factors, respectively. Finally, we derive explicit expressions for particles of ellipsoidal shape, for which we calculate angular scattering patterns as a function of particle orientation and for ensembles of particles.

© 2011 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(180.4315) Microscopy : Nonlinear microscopy
(290.5825) Scattering : Scattering theory

ToC Category:

Original Manuscript: October 11, 2010
Revised Manuscript: February 7, 2011
Manuscript Accepted: February 22, 2011
Published: May 9, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Alex G. F. de Beer, Sylvie Roke, and Jerry I. Dadap, "Theory of optical second-harmonic and sum-frequency scattering from arbitrarily shaped particles," J. Opt. Soc. Am. B 28, 1374-1384 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett. 259, 15–20 (1996). [CrossRef]
  2. E. C. Y. Yan and K. B. Eisenthal, “Probing the interface of microscopic clay particles in aqueous solution by second harmonic generation,” J. Phys. Chem. B 103, 6056–6060 (1999). [CrossRef]
  3. E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79, 898–903 (2000). [CrossRef] [PubMed]
  4. N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87, 103902 (2001). [CrossRef] [PubMed]
  5. Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, “Second-harmonic generation from silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78, 766–768 (2001). [CrossRef]
  6. S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302(2003). [CrossRef]
  7. K. B. Eisenthal, “Second harmonic spectroscopy of aqueous nano- and microparticle interfaces,” Chem. Rev. 106, 1462–1477(2006). [CrossRef] [PubMed]
  8. L. Schneider, H. J. Schmid, and W. Peukert, “Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces,” Appl. Phys. B 87, 333–339 (2007). [CrossRef]
  9. S. Roke, “Nonlinear optical spectroscopy of soft matter interfaces,” Chem. Phys. Chem. 10, 1380–1388 (2009). [CrossRef] [PubMed]
  10. E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “New method for determination of surface potential of microscopic particles by second harmonic generation,” J. Phys. Chem. B 102, 6331–6336(1998). [CrossRef]
  11. E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002). [CrossRef]
  12. H. M. Eckenrode and H. L. Dai, “Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: Poly-L-lysine on polystyrene sulfate microspheres,” Langmuir 20, 9202–9209(2004). [CrossRef] [PubMed]
  13. S. Roke, J. Buitenhuis, J. C. van Miltenburg, M. Bonn, and A. van Blaaderen, “Interface-solvent effects during colloidal phase transitions,” J. Phys. Condens. Matter 17, S3469–S3479 (2005). [CrossRef]
  14. S. Roke, O. Berg, J. Buitenhuis, A. van Blaaderen, and M. Bonn, “Surface molecular view of colloidal gelation,” Proc. Natl. Acad. Sci. USA 103, 13310–13314 (2006). [CrossRef] [PubMed]
  15. J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 23819 (2006). [CrossRef]
  16. S. H. Jen and H. L. Dai, “Probing molecules adsorbed at the surface of nanometer colloidal particles by optical second-harmonic generation,” J. Phys. Chem. B 110, 23000–23003(2006). [CrossRef] [PubMed]
  17. H. B. de Aguiar, A. G. F. de Beer, M. L. Strader, and S. Roke, “The interfacial tension of nanoscopic oil droplets in water is hardly affected by SDS surfactant,” J. Am. Chem. Soc. 132, 2122–2123 (2010). [CrossRef] [PubMed]
  18. S. H. Jen, G. Gonella, and H. L. Dai, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. I: Experimental observations,” J. Phys. Chem. A 113, 4758–4762 (2009). [CrossRef] [PubMed]
  19. S. H. Jen, H. L. Dai, and G. Gonella, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. II: The nonlinear Rayleigh-Gans-Debye model,” J. Phys. Chem. C 114, 4302–4308 (2010). [CrossRef]
  20. S. Viarbitskaya, V. Kapshai, P. van der Meulen, and T. Hansson, “Size dependence of second-harmonic generation at the surface of microspheres,” Phys. Rev. A 81, 053850 (2010). [CrossRef]
  21. B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light scattering,” Phys. Rev. B 82, 241404(2010). [CrossRef]
  22. E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “In situ studies of molecular transfer between microparticles by second-harmonic generation,” J. Phys. Chem. B 105, 8531–8537 (2001). [CrossRef]
  23. M. L. Strader, H. B. de Aguiar, A. G. F. de Beer, and S. Roke, “Label-free spectroscopic detection of vesicles in water using vibrational sum frequency scattering,” Soft Matt. 7, 4959–4963(2011). [CrossRef]
  24. Y. Jiang, L. Sun, and M. C. Downer, “Second-harmonic spectroscopy of two-dimensional Si nanocrystal layers embedded in SiO2 films,” Appl. Phys. Lett. 81, 3034–3036 (2002). [CrossRef]
  25. W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68, 085318 (2003). [CrossRef]
  26. P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005). [CrossRef] [PubMed]
  27. A. G. F. de Beer, H. B. de Aguiar, J. F. W. Nijsen, and S. Roke, “Detection of buried microstructures by nonlinear light scattering spectroscopy,” Phys. Rev. Lett. 102, 095502 (2009). [CrossRef] [PubMed]
  28. G. S. Agarwal and S. S. Jha, “Theory of 2nd harmonic-generation at a metal-surface with surface-plasmon excitation,” Solid State Commun. 41, 499–501 (1982). [CrossRef]
  29. J. P. Dewitz, W. Hubner, and K. H. Bennemann, “Theory for nonlinear Mie-scattering from spherical metal clusters,” Zeit. Phys. D 37, 75–84 (1996). [CrossRef]
  30. J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A. 55, 4520–4525 (1997). [CrossRef]
  31. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999). [CrossRef]
  32. V. L. Brudny, B. S. Mendoza, and W. L. Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000). [CrossRef]
  33. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347(2004). [CrossRef]
  34. S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: the concept of effective susceptibility,” Phys. Rev. B 70, 115106 (2004). [CrossRef]
  35. Y. Pavlyukh and W. Hubner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70, 245434 (2004). [CrossRef]
  36. A. G. F. de Beer and S. Roke, “Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects,” Phys. Rev. B 75, 245438 (2007). [CrossRef]
  37. J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B 78, 205322 (2008). [CrossRef]
  38. A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79, 155420 (2009). [CrossRef]
  39. A. G. F. de Beer and S. Roke, “Obtaining molecular orientation from second harmonic and sum frequency scattering experiments: angular distribution and polarization dependence,” J. Chem. Phys. 132, 234702 (2010). [CrossRef] [PubMed]
  40. R. Bernal and J. A. Maytorena, “Second harmonic generation from centrosymmetric thin films by a focused beam with arbitrary transverse structure,” Phys. Rev. B 70, 125420(2004). [CrossRef]
  41. U. Seifert, “Configurations of fluid membranes and vesicles,” Adv. Phys. 46, 13–137 (1997). [CrossRef]
  42. M. G. Rossmann and J. E. Johnson, “Icosahedral RNA virus structure,” Ann. Rev. Biochem. 58, 533–573 (1989). [CrossRef] [PubMed]
  43. A. Klug, “The tobacco mosaic virus particle: structure and assembly,” Philos. Trans. R. Soc. Lond. Ser. B 354, 531–535(1999). [CrossRef]
  44. R. C. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127, 12482–12483(2005). [CrossRef] [PubMed]
  45. B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007). [CrossRef] [PubMed]
  46. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407 (2005). [CrossRef]
  47. C. C. Neacsu, G. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B 71, 201402 (2005). [CrossRef]
  48. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960(2008). [CrossRef]
  49. J. I. Dadap, H. B. de Aguiar, and S. Roke, “Nonlinear light scattering from clusters and single particles,” J. Chem. Phys. 130, 214710 (2009). [CrossRef] [PubMed]
  50. I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010). [CrossRef]
  51. M. Finazzi, P. Biagioni, M. Celebrano, and L. Duo, “Selection rules for second-harmonic generation in nanoparticles,” Phys. Rev. B 76, 125414 (2007). [CrossRef]
  52. H. Held, A. I. Lvovsky, X. Wei, and Y. R. Shen, “Bulk contribution from isotropic media in surface sum-frequency generation,” Phys. Rev. B 66, 205110 (2002). [CrossRef]
  53. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Wiley, 1969).
  54. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  55. H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005). [CrossRef]
  56. A. G. F. de Beer, R. K. Campen, and S. Roke, “Separating surface structure and surface charge with second-harmonic and sum-frequency scattering,” Phys. Rev. B 82, 235431 (2010). [CrossRef]
  57. G. J. Simpson and K. L. Rowlen, “An SHG magic angle: dependence of second harmonic generation orientation measurements on the width of the orientation distribution,” J. Am. Chem. Soc. 121, 2635–2636 (1999). [CrossRef]
  58. S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface—2nd harmonic studies of the silica water interface,” Chem. Phys. Lett. 191, 327–335 (1992). [CrossRef]
  59. P. J. Wyatt, “Differential light scattering—a physical method for identifying living bacterial cells,” Appl. Opt. 7, 1879–1896(1968). [CrossRef] [PubMed]
  60. C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005). [CrossRef] [PubMed]
  61. L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, and L. Manna, “Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid,” J. Am. Chem. Soc. 128, 748–755 (2006). [CrossRef] [PubMed]
  62. Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical 2nd-harmonic images of 90-degrees domain-structure in BaTiO, and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995). [CrossRef]
  63. V. Kirilyuk, A. Kirilyuk, and T. Rasing, “A combined nonlinear and linear magneto-optical microscopy,” Appl. Phys. Lett. 70, 2306–2308 (1997). [CrossRef]
  64. M. Florsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency generation,” Mater. Sci. Eng. C 8–9, 335–341 (1999). [CrossRef]
  65. J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, A. Nahata, and T. F. Heinz, “Measurement of the vector character of electric fields by optical second-harmonic generation,” Opt. Lett. 24, 1059–1061 (1999). [CrossRef]
  66. K. Cimatu and S. Baldelli, “Sum frequency generation imaging microscopy of CO on platinum,” J. Am. Chem. Soc. 128, 16016–16017 (2006). [CrossRef] [PubMed]
  67. T. Baumgart, S. T. Hess, and W. W. Webb, “Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension,” Nature 425, 821–824 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited