OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 7 — Jul. 27, 2011

Z-scan measurements using ultrashort high-repetition-rate lasers: how to recognize the parasitic effects of non linear behavior of fused-silica damage sites

Raymond Edziah, Elaine Lalanne, Victor Torres, Anthony M. Johnson, and Sudhir Trivedi  »View Author Affiliations


JOSA B, Vol. 28, Issue 6, pp. 1385-1390 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001385


View Full Text Article

Enhanced HTML    Acrobat PDF (655 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We conducted Z-scan measurements using ultrashort high-repetition-rate lasers and spectroscopic-grade fused-quartz cuvettes that had undergone macroscopic laser-induced damage in the course of the measurements. Visual observation of increased scattering of the laser beam from the damaged sites and Nomarski microscope images showing changes in the morphology of the damaged regions were used as the criteria for damage. Intensity- dependent open- and closed-aperture Z-scan studies produced profiles that are characteristic of the extent of the damage. The appearance of these unique signatures in any high-repetition-rate Z-scan measurement is a useful marker for timely recognition of occasional collateral damages that are associated with this type of study.

© 2011 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4870) Nonlinear optics : Photothermal effects
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 23, 2010
Revised Manuscript: April 8, 2011
Manuscript Accepted: April 8, 2011
Published: May 13, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Raymond Edziah, Elaine Lalanne, Victor Torres, Anthony M. Johnson, and Sudhir Trivedi, "Z-scan measurements using ultrashort high-repetition-rate lasers: how to recognize the parasitic effects of nonlinear behavior of fused-silica damage sites," J. Opt. Soc. Am. B 28, 1385-1390 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-28-6-1385


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3635 (1998). [CrossRef]
  2. D. Vincent, S. Petit, and S. L. Chin, “Optical limiting studies in carbon-black suspension for subnanosecond and subpicosecond laser pulses,” Appl. Opt. 41, 2944–2946 (2002). [CrossRef] [PubMed]
  3. F. E. Hernández, W. Shensky III, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, “Viscosity dependence of optical limiting in carbon black suspensions,” Appl. Opt. 41, 1103–1107 (2002). [CrossRef] [PubMed]
  4. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004). [CrossRef] [PubMed]
  5. F. Y. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355 nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000). [CrossRef]
  6. W. H. Lowderemilk and D. Milan, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. 17, 1888–1903(1981). [CrossRef]
  7. V. A. Grindin, A. N. Petrovskii, and S. L. Pestmal, “Characteristics of the damage of transparent solids,” Sov. J. Quantum Electron. 4, 1270–1271 (1975). [CrossRef]
  8. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001). [CrossRef]
  9. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003). [CrossRef] [PubMed]
  10. D. W. Fradin, E. Yablonovitch, and M. Bass, “Confirmation of an electron avalanche causing laser-induced bulk damage at 1.06 μm,” Appl. Opt. 12, 700–709 (1973). [CrossRef] [PubMed]
  11. D. W. Fradin, N. Bloembergen, and J. P. Letellier, “Dependence of laser-induced breakdown field strength on pulse duration,” Appl. Phys. Lett. 22, 635–637 (1973). [CrossRef]
  12. L. A. Siiman, L. Lumea, and L. B. Glebov, “Nonlinear photoionization and laser-induced damage in silicate glasses by infrared ultrashort laser pulses,” Appl. Phys. B 96, 127–134 (2009). [CrossRef]
  13. N. L. Boling, M. D. Crisp, and G. Dube, “Laser-induced surface damage,” Appl. Opt. 12, 650–660 (1973). [CrossRef] [PubMed]
  14. M. Sheik-Bahae, A. A. Said, W. Tai-Huei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990). [CrossRef]
  15. E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett. 19, 495–497 (1971). [CrossRef]
  16. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974). [CrossRef]
  17. E. W. Van Stryland and M. Sheik-Bahae, “Z-scan measurements of optical nonlinearities,” in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, M.G.Kuzyk and C.W.Dirk, eds. (Marcel Dekker, 1998), pp. 655–692.
  18. A. A. Tesar, B. A. Fuchs, and P. P. Hed, “Examination of the polished surface character of fused silica,” Appl. Opt. 31, 7164–7172 (1992). [CrossRef] [PubMed]
  19. T. I. Suratwala, M. D. Feit, and W. A. Steele, “Toward deterministic material removal and surface figure during fused silica pad polishing,” J. Am. Ceram. Soc. 93, 1326–1340 (2010). [CrossRef]
  20. B. Bertussi, J.-Y. Natoli, and M. Commandre, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004). [CrossRef]
  21. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41, 3628–3633 (2002). [CrossRef] [PubMed]
  22. C. B. Schaffer, E. N. Glezer, N. Nishimura, and E. Mazur, “Ultrafast laser induced microexplosions: explosive dynamics and sub-micrometer structures,” Proc. SPIE 3269, 36–45 (1998). [CrossRef]
  23. M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999). [CrossRef]
  24. A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition lasers: how to manage thermal effects,” Opt. Express 13, 7976–7981 (2005). [CrossRef] [PubMed]
  25. R. de Nalda, R. del Coso, J. Requejo-Isidro, J. Olivares, A. Suarez-Garcia, J. Solis, and C. N. Afonso, “Limits to the determination of the nonlinear refractive index by the Z-scan method,” J. Opt. Soc. Am. B 19, 289–296 (2002). [CrossRef]
  26. Y. A. Repeev, “Two-photon absorption in fused quartz and in water at the wavelength of 212.8 nm,” Quantum Electron. 24, 897–899 (1994). [CrossRef]
  27. A. D. Walser, S. G. Demos, M. Etienne, and R. Dorsinville, “Nonlinear optical absorption in laser modified regions of fused silica,” Opt. Commun. 240, 417–421 (2004). [CrossRef]
  28. S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
  29. A. A. Said, T. Xia, A. Dogariu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, “Measurement of the optical damage threshold in fused quartz,” Appl. Opt. 34, 3374–3376(1995). [CrossRef] [PubMed]
  30. A. Starke and A. Bernhardt, “Laser damage threshold measurement according to ISO 11254: experimental realization at 1064 nm,” Proc. SPIE 2114, 212–219 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited