OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Plasmonic resonances of nanowires with periodically corrugated cross sections

Evgeniy V. Podivilov, Boris I. Sturman, and Maxim V. Gorkunov  »View Author Affiliations

JOSA B, Vol. 29, Issue 12, pp. 3248-3253 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (595 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For periodically corrugated nanowire cross sections, such that the polar-angle dependence of the radius is r=r0[1+uNcos(Nφ)], we calculate both the resonant values of metal permittivity ε and the corresponding plasmonic eigenfunctions. For sufficiently small perturbation amplitudes, NuN1, these fundamental characteristics admit full-scale analytical analysis revealing nontrivial plasmonic properties. For NuN>1, the analytical analysis is supplemented by numerical simulations; they show nonlinearly growing redshifts of the main plasmonic resonances with increasing modulation periodicity N and the amplitude uN.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: September 11, 2012
Revised Manuscript: October 16, 2012
Manuscript Accepted: October 16, 2012
Published: November 8, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Evgeniy V. Podivilov, Boris I. Sturman, and Maxim V. Gorkunov, "Plasmonic resonances of nanowires with periodically corrugated cross sections," J. Opt. Soc. Am. B 29, 3248-3253 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef]
  2. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef]
  3. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef]
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010). [CrossRef]
  5. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011). [CrossRef]
  6. R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901–1903 (2001). [CrossRef]
  7. V. Klimov, Nanoplasmonics (Pan Stanford, 2011).
  8. L. Nolvotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2007).
  9. J. P. Kottmann and O. J. F. Martin, “Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires,” Appl. Phys. B 73, 299–304 (2001). [CrossRef]
  10. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001). [CrossRef]
  11. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735–745 (2003). [CrossRef]
  12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  13. I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” J. Phys. Chem. B 107, 6269–6275 (2003). [CrossRef]
  14. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006). [CrossRef]
  15. G. Laurent, N. Felidj, J. Aubard, and G. Levi, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B 71, 045430 (2005). [CrossRef]
  16. F. Ouyang and M. Isaacson, “Surface plasmon excitation of objects with arbitrary shape and dielectric constant,” Philos. Mag. B 60, 481–492 (1989). [CrossRef]
  17. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72, 155412 (2005). [CrossRef]
  18. The importance of the curvature parameter comes from fact that a number of general judgements of [17] about the ε spectrum refer to convex particles, i.e., to κ>0.
  19. L. D. Landau and E. M. Lifshits, Quantum Mechanics(Pergamon, 1977), Chap. 12.
  20. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]
  21. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2(1), 18–29 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited