OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium

Nicolas I. Grigorchuk  »View Author Affiliations


JOSA B, Vol. 29, Issue 12, pp. 3404-3411 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003404


View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The local field approach and kinetic equation method is applied to calculate the surface plasmon radiative damping in a spheroidal metal nanoparticle embedded in any dielectric media. The radiative damping of the surface plasmon resonance as a function of the particle radius, shape, dielectric constant of the surrounding medium, and the light frequency is studied in detail. It is found that the radiative damping grows quadratically with the particle radius and oscillates with altering both the particle size and the dielectric constant of a surrounding medium. Much attention is paid to the electron surface-scattering contribution to the plasmon decay. All calculations of the radiative damping are illustrated by examples on the Au and Na nanoparticles.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.4020) Scattering : Mie theory
(300.2140) Spectroscopy : Emission
(300.6490) Spectroscopy : Spectroscopy, surface
(160.4236) Materials : Nanomaterials

ToC Category:
Spectroscopy

History
Original Manuscript: July 23, 2012
Revised Manuscript: September 26, 2012
Manuscript Accepted: October 25, 2012
Published: November 28, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Nicolas I. Grigorchuk, "Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium," J. Opt. Soc. Am. B 29, 3404-3411 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-29-12-3404


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. K. Sau, A. L. Rogach, F. Jáckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Advanced Materials 22, 1805–1825 (2010). [CrossRef]
  2. H. Mertens and A. Polman, “Strong luminescence quantum efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes,” J. Appl. Phys. 105, 044302 (2009). [CrossRef]
  3. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461–1471 (2008). [CrossRef]
  4. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).
  5. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  6. Y. Bilotsky, N. I. Grigorchuk, and P. M. Tomchuk, “Hot electrons and laser optoacoustics in metal nanoparticles,” Surf. Sci. 603, 3267–3274 (2009). [CrossRef]
  7. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003). [CrossRef]
  8. C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiating damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006). [CrossRef]
  9. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002). [CrossRef]
  10. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002). [CrossRef]
  11. C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7, 318–322 (2007). [CrossRef]
  12. M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, and A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance?” Appl. Phys. B 73, 305–310 (2001). [CrossRef]
  13. J. R. Lakowicz, “Radiative decay engineering. 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153–169 (2004). [CrossRef]
  14. M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008). [CrossRef]
  15. D. Li and Y. Xia, “Welding and patterning in a flash,” Nat. Mater. 3, 753–754 (2004). [CrossRef]
  16. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004). [CrossRef]
  17. U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001). [CrossRef]
  18. A. Ambrosio, B. Piccirillo, A. Sasso, and E. Santamato, “Experimental and theoretical study of the transient rotation of isotropic transparent microparticles in astigmatic optical tweezers,” Opt. Commun. 230, 337–345 (2004). [CrossRef]
  19. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef]
  20. B. J. Soller and D. G. Hall, “Dynamic modifications to the plasmon resonance of a metallic nanoparticle coupled to a planar waveguide: beyond the point-dipole limit,” J. Opt. Soc. Am. B 19, 1195–1203 (2002). [CrossRef]
  21. R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65, 155427 (2002);
  22. R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory behavior and enhancement of the surface plasmon linewidth in embedded noble metal nanoparticles,” Eur. Phys. J. D 24, 127–130 (2003).
  23. M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79, 035418 (2009). [CrossRef]
  24. E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003). [CrossRef]
  25. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982). [CrossRef]
  26. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamical depolarization,” Optic Lett. 8, 581–583 (1983). [CrossRef]
  27. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  28. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998). [CrossRef]
  29. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).
  30. The latter mechanism requires a threshold energy Eib of about 2.38 eV in the Au, whereas the energy of surface plasmon in the Au is 2.29  eV5. In the Ag Esp≈3  eV and Eib≈4  eV5.
  31. J. A. Osborn, “Demagnetizing factors of the general ellipsoid,” Phys. Rev. 67, 351–357 (1945). [CrossRef]
  32. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continous Media (Pergamon, 1986).
  33. J. D. Jackson, Classical Electrodynamics (Wiley, 2001).
  34. N. I. Grigorchuk and P. M. Tomchuk, “Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect,” Phys. Rev. B 84, 085448 (2011). [CrossRef]
  35. For prolate spheroid (a>b=c): R∥≡a and R⊥≡b, but for oblate one (a=b>c): R∥≡b and R⊥≡a.
  36. N. I. Grigorchuk and P. M. Tomchuk, “Theory for absorption of ultrashort laser pulses by spheroidal metallic nanoparticles,” Phys. Rev. B 80, 155456 (2009). [CrossRef]
  37. P. M. Tomchuk and N. I. Grigorchuk, “Shape and size effects on the energy absorption by small metallic particles,” Phys. Rev. B 73, 155423 (2006). [CrossRef]
  38. Ch. Kittel, Introduction to Solid State Physics (Wiley, 2005).
  39. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A: Pure Appl. Opt. 8, S239–S249 (2006). [CrossRef]
  40. N. I. Grigorchuk, “Plasmon resonant light scattering on spheroidal metallic nanoparticle embedded in a dielectric matrix,” Eur. Phys. Lett. 97, 45001 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited