OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Angular dependence of structural fluorescent emission from the scales of the male butterfly Troïdes magellanus (Papilionidae)

Eloise Van Hooijdonk, Carlos Barthou, Jean Pol Vigneron, and Serge Berthier  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 1104-1111 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1020 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reveals an enhanced fluorescence in the hindwings of the male Troïdes magellanus, due to the confinement of fluorophores in a three-dimensional photonic structure. It is characterized by a spatial variation of the emission intensity and coloration. It also reveals the role of the structure on the emission and reflection complementary processes. We focus on the experimental analysis of these phenomena by means of a morphological study, a reflection characterization, and an emission characterization. Collecting and analyzing data over every emerging direction was important in this work. A theoretical approach is proposed to explain the experimental observations.

© 2012 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(260.2510) Physical optics : Fluorescence
(330.1690) Vision, color, and visual optics : Color
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Physical Optics

Original Manuscript: November 22, 2011
Revised Manuscript: January 23, 2012
Manuscript Accepted: February 10, 2012
Published: April 30, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Eloise Van Hooijdonk, Carlos Barthou, Jean Pol Vigneron, and Serge Berthier, "Angular dependence of structural fluorescent emission from the scales of the male butterfly Troïdes magellanus (Papilionidae)," J. Opt. Soc. Am. B 29, 1104-1111 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristic of the incorporated luminescent material: the ’Nano-Fluko’ concept,” Proc. SPIE 7725, 77250S (2010). [CrossRef]
  2. D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005). [CrossRef]
  3. P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010). [CrossRef]
  4. R. P. Tompkins, J. M. Dawson, L. A. Homak, and T. H. Myers, “Optofluidic photonic crystals for biomolecular fluorescence enhancement : a bottom-up approach for fabricating GaN-based biosensors,” Proc. SPIE 7056, 70560J (2008). [CrossRef]
  5. J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005). [CrossRef]
  6. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  7. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987). [CrossRef]
  8. P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310, 1151 (2005). [CrossRef]
  9. E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophoton. 05, 053525 (2011). [CrossRef]
  10. T. Neubauer, “Butterflycorner—butterfly from all over the world,” http://en.butterflycorner.net .
  11. G. W. Beccaloni, M. J. Scoble, G. S. Robinson, and B. Pitkin, eds., “The Global Lepidoptera Names Index (LepIndex),” http://www.nhm.ac.uk/entomology/lepindex .
  12. C. Lawrence, P. Vukusic, and R. Sambles, “Grazing-incidence iridescence from a butterfly wing,” Appl. Opt. 41, 437–441 (2002). [CrossRef]
  13. J. P. Vigneron, K. Kertesz, Z. Vertesy, M. Rassart, V. Lousse, Z. Balint, and L. P. Biro, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E 78, 021903 (2008). [CrossRef]
  14. R. T. Lee and G. S. Smith, “Detailed electromagnetic simulation for the structural color of butterfly wings,” Appl. Opt. 48, 4177–4190 (2009). [CrossRef]
  15. Y. Umebachi and K. Yoshida, “Some chemical and physical properties of papiliochrome II in the wings of Papilio xuthus,” J. Insect Physiol. 16, 1203–1228 (1970). [CrossRef]
  16. S. J. Saul and M. Sugumaran, “Quinone methide as a reactive intermediate formed during the biosynthesis of papiliochrome-II, a yellow wing pigment of papilionid butterflies,” FEBS Lett. 279, 145–148 (1991). [CrossRef]
  17. P. B. Koch, B. Behnecke, M. Weigmann-Lenz, and R. H. French-Constant, “Insect pigmentation: activities of β-alanyldopamine synthase in wing color patterns of wild-type and melanic mutant swallowtail butterfly Papilio glaucus,” Pigment Cell Res. 13, 54–58 (2000). [CrossRef]
  18. Convention on International Trade in Endangered Species of wild fauna and flora (CITES), “Appendices I, II, and III,” http://www.cites.org/eng/app/Appendices-E.pdf .
  19. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999). [CrossRef]
  20. Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108, 063103 (2010). [CrossRef]
  21. M. Luscidini, M. Gerace, L. C. Andreani, and J. E. Siper, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 1–11 (2008).
  22. S. Berthier, Photonique des Morphos (Springer-Verlag, Berlin, 2010).
  23. J. L. Meyzonnette, “Notions de photométrie,” in Radiométrie et Détection Optique (EDP Sciences, 1992), pp. 3–92.
  24. O. Deparis and J. P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: the case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng., B 169, 12–15 (2010). [CrossRef]
  25. I. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. B 79, 474–481 (1907). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited