OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Characterization of the femtosecond speckle field of a multiply scattering medium via spatio-spectral interferometry

Ayhan Tajalli, David J. McCabe, Dane R. Austin, Ian A. Walmsley, and Béatrice Chatel  »View Author Affiliations


JOSA B, Vol. 29, Issue 6, pp. 1146-1151 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001146


View Full Text Article

Enhanced HTML    Acrobat PDF (501 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Propagation of an ultrashort laser pulse through a scattering medium forms a speckle pattern in the spatio-spectral domain. This pattern arises from the contribution of the randomly phased electric fields associated with the different optical paths in the medium. Studying the speckle field provides information both about the diffusion properties of the medium and spatio-temporal control of the transmitted or scattered light. In this paper a spatio-temporal characterization of the near-IR 120 fs pulse transmitted through a thick strongly scattering medium is undertaken using spatially and spectrally resolved Fourier-transform interferometry (SSI). The advantages of SSI over conventional pulse measurement techniques are discussed. The diffusion properties of the scattering samples are measured. We find a good agreement between our measured diffusion properties and those obtained using another method. The implications of this measurement technique are discussed.

© 2012 Optical Society of America

OCIS Codes
(290.4210) Scattering : Multiple scattering
(290.5820) Scattering : Scattering measurements
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

History
Original Manuscript: December 6, 2011
Revised Manuscript: February 23, 2012
Manuscript Accepted: February 25, 2012
Published: May 3, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Ayhan Tajalli, David J. McCabe, Dane R. Austin, Ian A. Walmsley, and Béatrice Chatel, "Characterization of the femtosecond speckle field of a multiply scattering medium via spatio-spectral interferometry," J. Opt. Soc. Am. B 29, 1146-1151 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-29-6-1146


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, Oxford University, 1997).
  2. P. E. Sebbah, Waves and Imaging through Complex Media (Kluwer Academic, 2001).
  3. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995). [CrossRef]
  4. S. K. Gayen and R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7(3), 16 (1996). [CrossRef]
  5. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991). [CrossRef]
  6. K. M. Yoo and R. R. Alfano, “Time-resolved coherent and incoherent components of forward light-scattering in random-media,” Opt. Lett. 15, 320–322 (1990). [CrossRef]
  7. L. Feng, K. M. Yoo, and R. R. Alfano, “Transmitted photon intensity through biological tissues within various time windows,” Opt. Lett. 19, 740–742 (1994). [CrossRef]
  8. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976). [CrossRef]
  9. S. Farsiu, J. Christofferson, B. Eriksson, P. Milanfar, B. Friedlander, A. Shakouri, and R. Nowak, “Statistical detection and imaging of objects hidden in turbid media using ballistic photons,” Appl. Opt. 46, 5805–5822 (2007). [CrossRef]
  10. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized-light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992). [CrossRef]
  11. O. Emile, F. Bretenaker, and A. LeFloch, “Rotating polarization imaging in turbid media,” Opt. Lett. 21, 1706–1708 (1996). [CrossRef]
  12. H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154, 255–260 (1998). [CrossRef]
  13. H. Ramachandran and S. Mujumdar, “Imaging through turbid media using polarization modulation: dependence on scattering anisotropy,” Opt. Commun. 241, 1–9 (2004). [CrossRef]
  14. D. S. Dilworth, E. N. Leith, and J. L. Lopez, “Three-dimensional confocal imaging of objects embedded within thick diffusing media,” Appl. Opt. 30, 1796–1803 (1991). [CrossRef]
  15. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991). [CrossRef]
  16. M. Tomita and T. Matsumoto, “Observation and formulation of two-dimensional speckle in the space and the time domains,” J. Opt. Soc. Am. B 12, 170–174 (1995). [CrossRef]
  17. W. J. Liu, R. X. Gao, and S. L. Qu, “Measurements of femtosecond temporal speckle field of a random medium,” Chin. Phys. B 19, 024204 (2010). [CrossRef]
  18. N. Curry, P. Bondareff, M. Leclercq, N. F. van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36, 3332–3334 (2011). [CrossRef]
  19. P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random media—an experimental study,” J. Phys. 49, 63–75 (1988). [CrossRef]
  20. A. Z. Genack, “Optical-transmission in disordered media,” Phys. Rev. Lett. 58, 2043–2046 (1987). [CrossRef]
  21. D. S. Wiersma, A. Muzzi, M. Colocci, and R. Righini, “Time-resolved experiments on light diffusion in anisotropic random media,” Phys. Rev. E 62, 6681–6687 (2000). [CrossRef]
  22. W. Cai, B. B. Das, F. Liu, M. Zevallos, M. Lax, and R. R. Alfano, “Time-resolved optical diffusion tomographic image reconstruction in highly scattering turbid media,” Proc. Natl. Acad. Sci. USA 93, 13561–13564 (1996). [CrossRef]
  23. I. M. Vellekoop, P. Lodahl, and A. Lagendijk, “Determination of the diffusion constant using phase-sensitive measurements,” Phys. Rev. E 71, 056604 (2005). [CrossRef]
  24. S. Faez, P. M. Johnson, and A. Lagendijk, “Varying the effective refractive index to measure optical transport in random media,” Phys. Rev. Lett. 103, 53903 (2009). [CrossRef]
  25. M. P. Vanalbada, B. A. Vantiggelen, A. Lagendijk, and A. Tip, “Speed of propagation of classical waves in strongly scattering media,” Phys. Rev. Lett. 66, 3132–3135 (1991). [CrossRef]
  26. R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007). [CrossRef]
  27. C. A. Thompson, K. J. Webb, and A. M. Weiner, “Diffusive media characterization with laser speckle,” Appl. Opt. 36, 3726–3734 (1997). [CrossRef]
  28. J. D. McKinney, M. A. Webster, K. J. Webb, and A. M. Weiner, “Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source,” Opt. Lett. 25, 4–6 (2000). [CrossRef]
  29. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007). [CrossRef]
  30. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef]
  31. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photon. 2, 110–115 (2008). [CrossRef]
  32. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011). [CrossRef]
  33. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photon. 5, 372–377 (2011). [CrossRef]
  34. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011). [CrossRef]
  35. T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, “Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper,” J. Opt. Soc. Am. B 19, 2795–2802 (2002). [CrossRef]
  36. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010). [CrossRef]
  37. D. J. Thouless, “Maximum metallic resistance in thin wires,” Phys. Rev. Lett. 39, 1167–1169 (1977). [CrossRef]
  38. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998). [CrossRef]
  39. D. R. Austin, T. Witting, and I. A. Walmsey, “Broadband astigmatism-free Czerny–Turner imaging spectrometer using spherical mirrors,” Appl. Opt. 48, 3846–3853 (2009). [CrossRef]
  40. C. Lopez, P. D. Garcia, R. Sapienza, and A. Blanco, “Photonic glass: a novel random material for light,” Adv. Mater. 19, 2597–2602 (2007). [CrossRef]
  41. M. V. Berry, “Disruption of wavefronts: Statistics of dislocations in incoherent gaussian random waves,” J. Phys. A 11, 27–37 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited