OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Measuring the number of (N-V) centers in single fluorescent nanodiamonds in the presence of quenching effects

Lun-Hsuan Chen, Tsong-Shin Lim, and Huan-Cheng Chang  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2309-2313 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quenching effects, including graphite-shell quenching and impurity quenching, on negatively charged nitrogen-vacancy (N-V) centers in fluorescent nanodiamonds (FNDs) can reduce the fluorescence quantum yield and bring about multiexponential decay fluorescence to FNDs. This causes the number of (N-V) centers to be underestimated when using the photon correlation method, which presumes identical emitters. This study proposes a method that combines time-resolved spectroscopy and photon correlation spectroscopy to modify the number measurement with the photon correlation method. The average number of (N-V) centers in 35 nm FNDs was corrected from 7.6 with the unmodified method to 11.96 with the modified method.

© 2012 Optical Society of America

OCIS Codes
(030.5290) Coherence and statistical optics : Photon statistics
(160.2540) Materials : Fluorescent and luminescent materials
(270.5290) Quantum optics : Photon statistics
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:

Original Manuscript: April 27, 2012
Revised Manuscript: June 22, 2012
Manuscript Accepted: July 7, 2012
Published: August 3, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Lun-Hsuan Chen, Tsong-Shin Lim, and Huan-Cheng Chang, "Measuring the number of (N-V) centers in single fluorescent nanodiamonds in the presence of quenching effects," J. Opt. Soc. Am. B 29, 2309-2313 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Beveratos, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802(R) (2001). [CrossRef]
  2. K. D. Weston, M. Dyck, P. Tinnefeld, C. Muller, D. P. Herten, and M. Sauer, “Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons,” Anal. Chem. 74, 5342–5349 (2002). [CrossRef]
  3. P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver, and M. Sauer, “Antibunching in the emission of a single tetrachromophoric dendritic system,” J. Am. Chem. Soc. 124, 14310–14311 (2002). [CrossRef]
  4. S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998). [CrossRef]
  5. Y. Y. Hui, Y. R. Chang, T. S. Lim, H. Y. Lee, W. Fann, and H. C. Chang, “Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation,” Appl. Phys. Lett. 94, 013104 (2009). [CrossRef]
  6. R. Hauert, “A review of modified DLC coatings for biological applications,” Diamond Relat. Mater. 12, 583–589 (2003). [CrossRef]
  7. S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005). [CrossRef]
  8. L. C. L. Huang and H. C. Chang, “Adsorption and immobilization of cytochrome c on nanodiamonds,” Langmuir 20, 5879–5884 (2004). [CrossRef]
  9. C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007). [CrossRef]
  10. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. vonBorczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997). [CrossRef]
  11. G. Davies and M. F. Hamer, “Optical studies of 1.945 ev vibronic band in diamond,” Proc. R. Soc. A 348, 285–298 (1976). [CrossRef]
  12. V. Vaijayanthimala and H. C. Chang, “Functionalized fluorescent nanodiamonds for biomedical applications,” Nanomedicine 4, 47–55 (2009). [CrossRef]
  13. Y. Xing and L. M. Dai, “Nanodiamonds for nanomedicine,” Nanomedicine 4, 207–218 (2009). [CrossRef]
  14. X. Fang, J. Mao, E. M. Levin, and K. Schmidt-Rohr, “Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy,” J. Am. Chem. Soc. 131, 1426–1435 (2009). [CrossRef]
  15. S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, “Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air,” J. Am. Chem. Soc. 128, 11635–11642 (2006). [CrossRef]
  16. B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Relat. Mater. 19, 314–318 (2010). [CrossRef]
  17. A. T. Collins, M. F. Thomaz, and M. I. B. Jorge, “Luminescence decay time of the 1.945 ev center in type Ib diamond,” J. Phys. C 16, 2177–2181 (1983). [CrossRef]
  18. A. Campion, A. R. Gallo, C. B. Harris, H. J. Robota, and P. M. Whitmore, “Electronic-energy transfer to metal-surfaces-a test of classical image dipole theory at short distances,” Chem. Phys. Lett. 73, 447–450 (1980). [CrossRef]
  19. J. J. Sakon, G. J. Ribeill, J. M. Garguilo, J. Perkins, K. R. Weninger, and R. J. Nemanich, “Fluorescence quenching effects of nanocrystalline diamond surfaces,” Diamond Relat. Mater. 18, 82–87 (2009). [CrossRef]
  20. G. Liaugaudas, A. T. Collins, K. Suhling, G. Davies, and R. Heintzmann, “Luminescence-lifetime mapping in diamond,” J. Phys.Condens. Matter 21, 364210 (2009). [CrossRef]
  21. Y. Y. Chen, H. L. Shu, Y. Kuo, Y. K. Tzeng, and H. C. Chang, “Measuring Forster resonance energy transfer between fluorescent nanodiamonds and near-infrared dyes by acceptor photobleaching,” Diamond Relat. Mater. 20, 803–807 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited