OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

Theory of microdroplet and microbubble deformation by Gaussian laser beam

Simen Å. Ellingsen  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1694-1710 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001694


View Full Text Article

Enhanced HTML    Acrobat PDF (1967 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The theory for linear deformations of fluid microparticles in a laser beam of Gaussian profile is presented, when the beam focus is at the particle center as in optical trapping. Three different fluid systems are considered: water microdroplet in air, air microbubble in water, and a special oil-emulsion in water system used in experiments with optical deformation of fluid interfaces. We compare interface deformations of the three systems when illuminated by wide (compared to particle radius) and narrow laser beams and analyze differences. Deformations of droplets are radically different from bubbles under otherwise identical conditions, due to the opposite lensing effect (converging and diverging, respectively) of the two; a droplet is deformed far more than a bubble, cetera paribus. Optical contrast is found to be of great importance to the shape obtained when comparing the relatively low-contrast oil-emulsion system to that of water droplets. We finally analyze the dynamics of particle motion when the laser beam is turned on, and compare a static beam to the case of a short pulse. The very different surface tension coefficient implies a very different time scale for dynamics: microseconds for the water–air interface and tens of milliseconds for the oil-emulsion. Surface oscillations of a water microdroplet are found always to be underdamped, while those of the oil-emulsion are overdamped; deformations of a microbubble can be either, depending on physical parameters.

© 2013 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(260.2110) Physical optics : Electromagnetic optics
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(240.6648) Optics at surfaces : Surface dynamics

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 12, 2012
Revised Manuscript: February 20, 2013
Manuscript Accepted: April 19, 2013
Published: May 30, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Simen Å. Ellingsen, "Theory of microdroplet and microbubble deformation by Gaussian laser beam," J. Opt. Soc. Am. B 30, 1694-1710 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-30-6-1694


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000). [CrossRef]
  2. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001). [CrossRef]
  3. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011). [CrossRef]
  4. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5, 583–590 (2011). [CrossRef]
  5. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008). [CrossRef]
  6. C. N. Baroud, M. Robert de Saint Vincent, and J.-P. Delville, “An optical toolbox for total control of droplet microfluidics,” Lab on a Chip 7, 1029–1033 (2007). [CrossRef]
  7. T. Nishimura, Y. Ogura, and J. Tanida, “Optofluidic DNA computation based on optically manipulated microdroplets,” Microfluid. Nanofluid. 13, 1–7 (2012). [CrossRef]
  8. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef]
  9. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007). [CrossRef]
  10. C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81–95 (2008). [CrossRef]
  11. A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express 2, 658–664 (2011). [CrossRef]
  12. H. Zappe, Fundamentals of Micro-Optics (Cambridge University, 2010).
  13. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  14. D. Sinclair and V. K. la Mer, “Light scattering as a measure of particle size in aerosols,” Chem. Rev. 44, 245–267 (1949). [CrossRef]
  15. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003). [CrossRef]
  16. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011), and supplementary information. [CrossRef]
  17. S. Å. Ellingsen, “Microdroplet oscillations during optical pulling,” Phys. Fluids 24, 022002 (2012). [CrossRef]
  18. A. Casner and J.-P. Delville, “Laser-induced hydrodynamic instability of fluid interfaces,” Phys. Rev. Lett. 90, 144503 (2003).
  19. R. D. Schroll, R. Wunenburger, and J.-P. Delville, “Liquid transport due to light scattering” Phys. Rev. Lett. 98, 133601 (2007).
  20. H. Chrabi, D. Lasseux, R. Wunenburger, E. Arquis, and J.-P. Delville, “Optohydrodynamics of soft fluid interfaces: optical and viscous nonlinear effects,” Eur. Phys. J. E 32, 43–52 (2010). [CrossRef]
  21. R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J.-P. Delville, “Fluid flows driven by light scattering,” J. Fluid Mech. 666, 273–307 (2011). [CrossRef]
  22. B. Issenmann, R. Wunenburger, H. Chrabi, M. Gandil, and J.-P. Delville, “Unsteady deformations of a free liquid surface caused by radiation pressure,” J. Fluid Mech. 682, 460–490 (2011). [CrossRef]
  23. A. Hallanger, I. Brevik, S. Haaland, and R. Sollie, “Nonlinear deformations of liquid–liquid interfaces induced by electromagnetic radiation,” Phys. Rev. E 71, 056601 (2005). [CrossRef]
  24. O. J. Birkeland and I. Brevik, “Nonlinear laser-induced deformations of liquid–liquid interfaces: an optical fiber model,” Phys. Rev. E 78, 066314 (2008).
  25. A. D. Ward, M. Berry, C. D. Mellor, and C. D. Bain, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. 2006, 4515–4517 (2006). [CrossRef]
  26. A. D. Ward, M. Berry, P. Ash, D. Woods, and C. D. Bain, “The polymerisation of emulsion droplets deformed using laser tweezers to create microscopic polymer particles,” Central Laser Facility Ann. Rep. 2006/2007 Section 7 (2007), pp. 199–201.
  27. D. A. Woods, C. D. Mellor, J. M. Taylor, C. D. Bain, and A. Ward, “Nanofluidic networks created and controlled by light,” Soft Matter 7, 2517–2520 (2011). [CrossRef]
  28. S. Mitani and K. Sakai, “Measurement of ultralow interfacial tension with a laser interface manipulation technique,” Phys. Rev. E 66, 031604 (2002). [CrossRef]
  29. A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973). [CrossRef]
  30. H.-M. Lai and K. Young, “Response of a liquid surface to the passage of an intense laser pulse,” Phys. Rev. A 14, 2329–2333 (1976). [CrossRef]
  31. J.-Z. Zhang and R. K. Chang, “Shape distortion of a single water droplet by laser-induced electrostriction,” Opt. Lett. 13, 916–918 (1988). [CrossRef]
  32. H.-M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of a micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6, 2430–2437 (1989). [CrossRef]
  33. I. Brevik and R. Kluge, “Oscillations of a water droplet illuminated by a linearly polarized laser pulse,” J. Opt. Soc. Am. B 16, 976–985 (1999). [CrossRef]
  34. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
  35. P. C. F. Møller and L. B. Oddershede, “Quantification of droplet deformation by electromagnetic trapping,” Europhys. Lett. 88, 48005 (2009). [CrossRef]
  36. S. Anand, A. Engelbrecht, and D. McGloin, “Optically written optofluidic ice channels,” J. Opt. 13, 044005 (2011). [CrossRef]
  37. H. M. Lai, C. C. Lam, P. T. Leung, and K. Young, “Effect of perturbations on the widths of narrow morphology-dependent resonances in Mie scattering,” J. Opt. Soc. Am. B 8, 1962–1973 (1991). [CrossRef]
  38. A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, “Ray chaos and Q spoiling in lasing droplets,” Phys. Rev. Lett. 75, 2682–2685 (1995). [CrossRef]
  39. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979). [CrossRef]
  40. S. Å. Ellingsen and I. Brevik, “Electrostrictive counterforce on fluid microdroplet in short laser pulse,” Opt. Lett. 37, 1928–1930 (2012). [CrossRef]
  41. R. Peierls, “The momentum of light in a refracting medium,” Proc. R. Soc. London Ser. A 347, 475–491 (1976). [CrossRef]
  42. R. V. Jones and B. Leslie, “The measurement of optical radiation pressure in dispersive media,” Proc. R. Soc. London Ser. A 360, 347–363 (1978). [CrossRef]
  43. H. M. Lai, W. M. Suen, and K. Young, “Microscopic derivation of the Helmholtz force density,” Phys. Rev. Lett. 47177–179 (1981). [CrossRef]
  44. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Elsevier Butterworth-Heinemann, 1984).
  45. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986). [CrossRef]
  46. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003). [CrossRef]
  47. M. L. Cordero, E. Verneuil, F. Gallaire, and C. N. Baroud, “Time-resolved temperature rise in a thin liquid film due to laser absorption,” Phys. Rev. E 79, 011201 (2009). [CrossRef]
  48. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 1st ed. (Pergamon, 1959).
  49. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]
  50. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
  51. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988). [CrossRef]
  52. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989). [CrossRef]
  53. R. C. Thorne, “The asymptotic expansion of Legendre functions of large degree and order,” Phil. Trans. R. Soc. A 249, 597–620 (1957). [CrossRef]
  54. S. Å. Ellingsen and I. Brevik, “Electrostrictive fluid pressure from a laser beam,” Phys. Fluids 23, 096101 (2011). [CrossRef]
  55. J. V. Wehausen and E. V. Laitone, “Surface waves,” Encyclopedia Phys. 9, 446–476 (1960).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited