OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 6 — Jun. 13, 2006

Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models

Dhruv Sud, Wei Zhong, David G. Beer, and Mary-Ann Mycek  »View Author Affiliations


Optics Express, Vol. 14, Issue 10, pp. 4412-4426 (2006)
http://dx.doi.org/10.1364/OE.14.004412


View Full Text Article

Enhanced HTML    Acrobat PDF (2989 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fluorescence lifetime imaging microscopy (FLIM) method was developed and applied to investigate metabolic function in living human normal esophageal (HET-1) and Barrett’s adenocarcinoma (SEG-1) cells. In FLIM, image contrast is based on fluorophore excited state lifetimes, which reflect local biochemistry and molecular activity. Unique FLIM system attributes, including variable ultrafast time gating (≥200 ps), wide spectral tunability (337.1–960 nm), large temporal dynamic range (≥600 ps), and short data acquisition and processing times (15 s), enabled the study of two key molecules consumed at the termini of the oxidative phosphorylation pathway, NADH and oxygen, in living cells under controlled and calibrated environmental conditions. NADH is an endogenous cellular fluorophore detectable in living human tissues that has been shown to be a quantitative biomarker of dysplasia in the esophagus. Lifetime calibration of an oxygen-sensitive, ruthenium-based cellular stain enabled in vivo oxygen level measurements with a resolution of 8 µM over the entire physiological range (1–300 µM). Starkly higher intracellular oxygen and NADH levels in living SEG-1 vs. HET-1 cells were detected by FLIM and attributed to altered metabolic pathways in malignant cells.

© 2006 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 14, 2006
Revised Manuscript: May 8, 2006
Manuscript Accepted: May 8, 2006
Published: May 15, 2006

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Dhruv Sud, Wei Zhong, David G. Beer, and Mary-Ann Mycek, "Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models," Opt. Express 14, 4412-4426 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-10-4412


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. "Cancer Facts and Figures 2005," (American Cancer Society, Atlantic City, 2005).
  2. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Research 62, 682-687 (2002). [PubMed]
  3. E. Eigenbrodt, U. Gerbracht, S. Mazurek, P. Presek, and R. Friis, "Carbohydrate metabolism and neoplasia: new perspectives for diagnosis and therapy," in Biochemical and Molecular Aspects of Selected Cancers, T. G. Pretlow II, and T. P. Pretlow, eds. (Academic Press, Inc., San Diego, 1994), 311-385.
  4. H. Schneckenburger, and K. König, "Fluorescence decay and imaging of NAD(P)H and flavins as metabolic indicators," Opt Eng 31, 1447-1451 (1992). [CrossRef]
  5. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
  6. J. W. Dobrucki, "Interaction of oxygen-sensitive luminescent probes Ru(phen)(3)(2+) and Ru(bipy)(3)(2+) with animal and plant cells in vitro. Mechanism of phototoxicity and conditions for non-invasive oxygen measurements," J. Photochem. Photobiol. B 65, 136-144 (2001). [CrossRef]
  7. J. V. Houten, and R. J. Watts, "Temperature dependence of the photophysical and photochemical properties of the Tris(2,2'-bipyridyl) ruthenium(II) ion in aqueous solution," J. Am. Chem. Soc. 96, 4853-4858 (1976). [CrossRef]
  8. W. Rudolph, and M. Kempe, "Topical review: Trends in optical biomedical imaging," J. Mod. Opt. 44, 1617-1642 (1997). [CrossRef]
  9. P. J. Tadrous, "Methods for imaging the structure and function of living tissues and cells: 2. fluorescence lifetime imaging," J. Pathology 191, 229-234 (2000). [CrossRef] [PubMed]
  10. Y. Chen, and J. D. Mills, "Protein localization in living cells and tissues using FRET and FLIM," Differentiation 71, 528-541 (2003). [CrossRef] [PubMed]
  11. R. N. Day, and D. W. Piston, "Spying on the hidden lives of proteins," Nat. Biotechnol. 17, 425-426 (1999). [CrossRef] [PubMed]
  12. P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M.-A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," Appl. Phys. B 76, 483-496 (2003). [CrossRef]
  13. W. Zhong, P. Urayama, and M.-A. Mycek, "Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing," J. Phys. D 36, 1689-1695 (2003). [CrossRef]
  14. D. Lubbers, "Optical sensors for clinical monitoring," Acta Anaesthesiologica Scandinavica 39, 37-54 (1995). [CrossRef]
  15. R. P. Pandian, V. K. Kutala, N. L. Parinandi, J. L. Zweier, and P. Kuppusamy, "Measurement of oxygen consumption in mouse aortic endothelial cells using a microparticulate oximetry probe," Arch. Biochem. Biophys. 420, 169-175 (2003). [CrossRef] [PubMed]
  16. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, "Fluorescence lifetime imaging of free and protein-bound NADH," Proceedings of the National Academy of Sciences 89, 1271-1275 (1992). [CrossRef]
  17. H. C. Gerritsen, R. Sanders, A. Draaijer, and Y. K. Levine, "Fluorescence lifetime imaging of oxygen in living cells," J. Fluoresc. 7, 11-16 (1997). [CrossRef]
  18. G. D. Stoner, M. E. Kaighn, R. R. Reddel, J. H. Resau, D. Bowman, Z. Naito, N. Matsukura, M. You, A. J. Galati, and C. C. Harris, "Establishment and characterization of SV40 T-antigen immortalized human esophageal epithelial cells," Cancer Research 51, 365-371 (1991). [PubMed]
  19. O. S. Soldes, R. D. Kuick, I. A. Thompson, 2nd, S. J. Hughes, M. B. Orringer, M. D. Iannettoni, S. M. Hanash, and D. G. Beer, "Differential expression of Hsp27 in normal oesophagus, Barrett's metaplasia and oesophageal adenocarcinomas," Br J Cancer 79, 595-603 (1999). [CrossRef] [PubMed]
  20. V. K. Kutala, N. L. Parinandi, R. P. Pandian, and P. Kuppusamy, "Simultaneous measurement of oxygenation in intracellular and extracellular compartments of lung microvascular endothelial cells," Antioxid Redox Signal 6, 597-603 (2004). [CrossRef] [PubMed]
  21. N. Khan, J. Shen, T. Y. Chang, C. C. Chang, P. C. Fung, O. Grinberg, E. Demidenko, and H. Swartz, "Plasma membrane cholesterol: a possible barrier to intracellular oxygen in normal and mutant CHO cells defective in cholesterol metabolism," Biochemistry 42, 23-29 (2003). [CrossRef] [PubMed]
  22. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, "Fluorescence, Reflectance, and Light-Scattering Spectroscopy for Evaluating Dysplasia in patients With Barrett'e Esopghagus," Gastroenterology 120, 1620-1629 (2001). [CrossRef] [PubMed]
  23. R. Glasgold, M. Glasgold, H. Savage, J. Pinto, R. Alfano, and S. Schantz, "Tissue Autofluorescence as an intermediate endpoint in NMBA-induced esophageal carcinogenesis," Cancer Lett. 82, 33-41 (1994). [CrossRef] [PubMed]
  24. B. W. Gibson, "The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation," Int..J Biochem. Cell Biol. 37, 927-934 (2005). [CrossRef] [PubMed]
  25. L. B. Chen, M. J. Welss, S. Davis, R. S. Bleday, J. R. Wong, J. Song, M. Terasaki, E. L. Shepherd, E. S. Walker, and G. D. Steele, Jr., "Mitochondria in living cells: effects of growth factors and tumor promoters, alterations in carcinoma cells, and targets for therapy," Cancer Cells 3, 433-443 (1985).
  26. A. P. Brogan, W. R. Widger, and H. Kohn, "Bicyclomycin fluorescent probes: synthesis and biochemical, biophysical, and biological properties," J. Org. Chem. 68, 5575-5587 (2003). [CrossRef] [PubMed]
  27. A. J. Mamelak, J. Kowalski, K. Murphy, N. Yadava, M. Zahurak, D. J. Kouba, B. G. Howell, J. Tzu, D. L. Cummins, N. J. Liegeois, K. Berg, and D. N. Sauder, "Downregulation of NDUFA1 and other oxidative phosphorylation-related genes is a consistent feature of basal cell carcinoma," Exp Dermatol. 14, 336-348 (2005). [CrossRef] [PubMed]
  28. H. Xu, J. W. Aylott, and R. Kopelman, "Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging," Analyst 127, 1471-1477 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited