OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 4 — Apr. 12, 2006

Plasmonic field enhancement and SERS in the effective mode volume picture

Stefan A. Maier  »View Author Affiliations

Optics Express, Vol. 14, Issue 5, pp. 1957-1964 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The controlled creation of nanometric electromag- netic field confinement via surface plasmon polariton excitations in metal/insulator/metal heterostructures is described via the concept of an effective electromagnetic mode volume Veff. Extensively used for the description of dielectric microcavities, its extension to plasmonics provides a convenient figure of merit and allows comparisons with dielectric counterparts. Using a one-dimensional analytical model and three-dimensional finite-difference time-domain simulations, it is shown that plasmonic cavities with nanometric dielectric gaps indeed allow for physical as well as effective mode volumes well below the diffraction limit in the gap material, despite significant energy penetration into the metal. In this picture, matter-plasmon interactions can be quantified in terms of quality factor Q and V eff , enabling a resonant cavity description of surface enhanced Raman scattering.

© 2006 Optical Society of America

OCIS Codes
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: January 3, 2006
Revised Manuscript: February 28, 2006
Manuscript Accepted: February 28, 2006
Published: March 6, 2006

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

Stefan A. Maier, "Plasmonic field enhancement and SERS in the effective mode volume picture," Opt. Express 14, 1957-1964 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy inmetal/dielectric structures," J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mat. 2, 229-232 (2003). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2002). [CrossRef]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997). [CrossRef]
  5. S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102 (1997). [CrossRef] [PubMed]
  6. H. Xu, J. Aizpurua, M. Kaell, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000). [CrossRef]
  7. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, andW. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B. 72, 165409 (2005) [CrossRef]
  8. H. Kimble, "Structure and Dynamics in Cavity Quantum Electrodynamics," pp. 203-266 (Academic Press, Boston, 1994).
  9. D. J. Norris, M. Kuwata-Gonokami, and W. E. Moerner, "Excitation of a single molecule on the surface of a spherical microcavity," Appl. Phys. Lett. 71, 297-299 (1997). [CrossRef]
  10. R. K. Chang and A. J. Campillo, eds., "Optical Processes in Microcavities" (World Scientific, Singapore, 1996). [CrossRef]
  11. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fusedsilica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998). [CrossRef]
  12. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  13. A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, "Room Temperature Operation of Submicrometre Radius Disk Laser," Electron. Lett. 29, 1666-1667 (1993). [CrossRef]
  14. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, "Photonic Crystals" (Princeton University Press, Princeton, New Jersey, 1995).
  15. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1824 (1999). [CrossRef] [PubMed]
  16. W. Vogel and D.-G. Welsch, "Lectures on Quantum Optics" (Akademie Verlag GmbH, Berlin, Federal Republic of Germany, 1994).
  17. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  18. A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, "On cavity modification of stimulated Raman scattering," J. Opt. B: Quantum Semiclass. Opt. 5, 272-278 (2003). [CrossRef]
  19. M. Kerker, D.-S. Wang, and H. Chew, "Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata," Appl. Opt. 19, 4159 (1980). [CrossRef] [PubMed]
  20. B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556-13572 (1991). [CrossRef]
  21. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  22. R. Loudon, "The propagation of electromagnetic energy through an absorbing dielectric," J. Phys. A 3, 233-245 (1970). [CrossRef]
  23. R. Ruppin, "Electromagnetic energy density in a dispersive and absorptive material," Phys. Lett. A 299, 309-312 (2002). [CrossRef]
  24. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475 (1997). [CrossRef] [PubMed]
  25. L. C. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13,276 (1999). [CrossRef]
  26. M. A. Ordal, L. L. Long, R. J. Bell, R. R. Bell, R.W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983). [CrossRef] [PubMed]
  27. I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, "Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory," Phys. Rev. B 69, 121403 (2004). [CrossRef]
  28. H. A. Haus, "Waves and Fields in Optoelectronics", 1st ed. (Prentice-Hall, Englewood Cliffs, New Jersey 07632, 1984).
  29. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultralow-threshold Raman laser using spherical dielectric microcavity," Nature 415, 621-623 (2002). [CrossRef] [PubMed]
  30. T. Klar, M. Perner, S. Grosse, G. von Plessen,W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80, 4249-4252 (1998). [CrossRef]
  31. V. A. Shubin, W. Kim, V. P. Safonov, A. K. Sarychev, R. L. Armstrong, and V. M. Shalaev, "Surface-plasmonenhanced radiation effects in confined photonic systems," J. Lightwave Technol. 17, 2183-2190 (1999). [CrossRef]
  32. E. Hinds, "Pertubative cavity quantum electrodynamics", pp. 1-56 (Academic Press, Boston, 1994).
  33. W. L. Barnes, "Electromagnetic Crystals for Surface Plasmon Polaritons and the Extraction of Light from Emissive Devices," J. Lightwave Technol. 17, 2170-2182 (1999). [CrossRef]
  34. J. Vu¡cković, M. Lon¡car, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131-1144 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited