OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 5 — May. 5, 2006

Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips

Ryan M. Roth, Nicolae C. Panoiu, Matthew M. Adams, Richard M. Osgood, Jr., Catalin C. Neacsu, and Markus B. Raschke  »View Author Affiliations

Optics Express, Vol. 14, Issue 7, pp. 2921-2931 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (777 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical-field enhancement and confinement for an asymmetrically illuminated nanoscopic Au tip suspended over a planar Au substrate is investigated both numerically and experimentally. The spatial field distribution of the tip-sample system was calculated using the full 3D finite-difference time-domain method. The calculation enables investigation of the effects of the substrate-tip placement, angle of incidence, and spectral response. The tip plasmon response leads to a significant (up to ~70 times) local field enhancement between the tip and substrate. The enhancement is found to be extremely sensitive to the tip-sample separation distance. Tip-enhanced Raman scattering experiments were performed and the numerical results provide a consistent description of the observed field localization and enhancement.

© 2006 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: February 9, 2006
Revised Manuscript: March 27, 2006
Manuscript Accepted: March 28, 2006
Published: April 3, 2006

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Ryan M. Roth, Nicolae C. Panoiu, Matthew M. Adams, Richard M. Osgood, Catalin C. Neacsu, and Markus B. Raschke, "Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14, 2921-2931 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. L. Haynes and R. P. Van Duyne, "Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy," J. Phys. Chem. B 107, 7426-7433 (2003). [CrossRef]
  2. S. Nie and S.-R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single-Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  4. C. J. Chen and R. M. Osgood, "Direct Observation of the Local-Field-Enhanced Surface Photochemical Reactions," Phys. Rev. Lett. 50, 1705-1708 (1983). [CrossRef]
  5. J. L. West and N. J. Halas, "Engineered Nanomaterials for Biophotonics Applications: Improving Sensing, Imaging, and Therapeutics," Ann. Rev. Biomed. Eng. 5, 285-292 (2003). [CrossRef]
  6. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, andW. E.Moerner, "Improving theMismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  7. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  8. J.-P. Fillard, Near Field Optics and Nanoscopy (World Scientific, 1997).
  9. A. Bouhelier, J. Renger, M.-R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy," J. Microscopy 210, 220-224 (2002). [CrossRef]
  10. L. Liu, and S. He, "Design of metal-cladded near-field fiber probes with a dispersive body-of-revolution finitedifference time-domain method," Appl. Opt. 44, 3429-3437 (2005). [CrossRef] [PubMed]
  11. T.-W. Lee and S. K. Gray, "Subwavelength light bending by metal slit structures," Opt. Express 13, 9652-9659 (2005). [CrossRef] [PubMed]
  12. N.-C. Panoiu and R. M. Osgood, Jr., "Subwavelength Nonlinear Plasmonic Nanowire," Nano Lett. 4, 2427-2430 (2004). [CrossRef]
  13. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, "Near-field Second-Harmonic Generation Induced by Local Field Enhancement," Phys. Rev. Lett. 90, 013903 (2003). [CrossRef] [PubMed]
  14. A. Bouhelier, M. R. Beversluis, and L. Novotny, "Applications of field-enhanced near-field optical microscopy," Ultramicroscopy 100, 413-419 (2004). [CrossRef] [PubMed]
  15. C. C. Neacsu, G. A. Steudle, M. B. Raschke, "Plasmonic light scattering from nanoscopic metal tips," Appl. Phys. B 80, 295-300 (2005). [CrossRef]
  16. L. Aigouy, F. X. Andreani, A. C. Boccara, J. C. Rivoal, J. A. Porto, R. Carminati, J.-J. Greffet, and R. Megy, "Near-field optical spectroscopy using an incoherent light source," Appl. Phys. Lett. 76, 397-399 (2000). [CrossRef]
  17. A. L. Demming, F. Festy, and D. Richards, "Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering," J. Chem. Phys. 122, 184716 (2005). [CrossRef] [PubMed]
  18. C. C. Neacsu, G. A. Reider, and M. B. Raschke, "Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures," Phys. Rev. B 71, 201402 (2005). [CrossRef]
  19. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, "High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes," Phys. Rev. Lett. 90, 095503 (2003). [CrossRef] [PubMed]
  20. F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. R. Soc. Lond. A 362, 787-805 (2004). [CrossRef]
  21. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, S. "Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging," Phys. Rev. Lett. 92, 220801 (2004). [CrossRef] [PubMed]
  22. N. Nilius, N. Ernst, and H.-J. Freund, "Tip influence on plasmon exicitations in single gold particles in an STM," Phys. Rev. B 65, 115421 (2002). [CrossRef]
  23. J. A. Porto, P. Johansson, S. P. Apell, and T. Lopez-Rios, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B 67, 085409 (2003). [CrossRef]
  24. J. T. Krug, E. J. Sanchez, and S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002). [CrossRef]
  25. W. Denk, and D. W. Pohl, "Near-field optics: Microscopy with nanometer-size fields," J. Vac. Sci. Technol. B 9, 510-513 (1991). [CrossRef]
  26. Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip," J. Appl. Phys. 85, 1294-1301 (1999). [CrossRef]
  27. A. Downes, D. Salter, and A. Elfick, "Finite Element Simulations of Tip-Enhanced Raman and Fluorescence Spectroscopy," J. Phys. Chem. B (ASAP, 2006), http://pubs.acs.org/cgibin/asap.cgi/jpcbfk/asap/pdf/jp060173w.pdf. [CrossRef] [PubMed]
  28. S. Bruzzone, M. Malvaldi, G. Arrighini, and C. Guidotti, "Theoretical Study of Electromagnetic Scattering by Metal Nanoparticles," J. Phys. Chem. B 109, 3807-3812 (2005). [CrossRef]
  29. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Appl. Opt. 24, 4493-4499 (1985). [CrossRef] [PubMed]
  30. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  31. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  32. M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  33. V. Kuzmiak, A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B 55, 7427-7444 (1997). [CrossRef]
  34. T. Ito and K. Sakoda, "Photonic bands of metallic systems. II. Features of surface plasmon polaritons," Phys. Rev. B 64, 045117 (2001). [CrossRef]
  35. C. F. Bohrena and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1998). [CrossRef]
  36. Similarly, Malachite Green molecules as adsorbate on planar Au surfaces were studied, as described in detail elsewhere: C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, (Phys. Rev. B, submitted).
  37. M. Moskovits, "Surface-Enhanced Spectroscopy," Rev. Mod. Phys. 57, 783 (1985). [CrossRef]
  38. A. D. McFarland, M. A. Young, J. Dieringer, R. P. Van Duyne, "Wavelength-Scanned Surface Enhanced Raman Excitation Spectroscopy," J. Phys. Chem. B 109, 11279 (2005). [CrossRef]
  39. K. Karrai, I. Tiemann, "Interfacial shear force microscopy," Phys. Rev. B 68, 13174 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited