OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 9 — Sep. 26, 2007

Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells

C.L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski  »View Author Affiliations


Optics Express, Vol. 15, Issue 16, pp. 10303-10317 (2007)
http://dx.doi.org/10.1364/OE.15.010303


View Full Text Article

Enhanced HTML    Acrobat PDF (2063 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cell surgery based on ultrashort laser pulses is a fast evolving field in biophotonics. Noninvasive intra cellular dissection at sub-diffraction resolution can be performed within vital cells with very little hazardous effects to adjacent cell organelles. Microscope objectives of high numerical aperture (NA) are used to focus ultrashort pulses to a small spot. Due to the high order of nonlinearity, plasma formation and thus material manipulation is limited to the very focus. Nonetheless nonlinear plasma formation is generally accompanied by a number of additional nonlinear effects like self-focusing and filamentation. These parasitic effects limit the achievable precision and reproducibility of applications. Experimentally it is known that the intensity of these effects decreases with increasing NA of the focusing optics, but the process of nonlinear plasma formation at high NA has not been studied numerically in detail yet. To simulate the interaction of ultrashort laser pulses with transparent materials at high NA a novel nonlinear Schrödinger equation is derived; the multiple rate equation (MRE) model is used to simultaneously calculate the generation of free electrons. Nonparaxial and vectorial effects are taken into account to accurately include tight focusing conditions. Parasitic effects are shown to get stronger and increasingly distortive for NA <0.9, using water as a model substance for biological soft tissue and cellular constituents.

© 2007 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(140.3440) Lasers and laser optics : Laser-induced breakdown
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(270.4180) Quantum optics : Multiphoton processes

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 12, 2007
Revised Manuscript: July 23, 2007
Manuscript Accepted: July 24, 2007
Published: July 31, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Citation
C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, "Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells," Opt. Express 15, 10303-10317 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-16-10303


Sort:  Year  |  Journal  |  Reset  

References

  1. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Valle, "Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses," Opt. Lett. 28, 1591-1593 (2003). [CrossRef] [PubMed]
  2. A. Dubietis, A. Couairon, E. Kučinskas, G. Tamošaukas, E. Gaižauskas, D. Faccio, and P. Di Trapani, "Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water," Appl. Phys. B 84, 439-446 (2006). [CrossRef]
  3. C. L. Arnold, A. Heisterkamp, W. Ertmer and H. Lubatschowski, "Streak formation as side effect of optical breakdown during processing the bulk of transparent Kerr media with ultra-short laser pulses," Appl. Phys. B 80, 247-253 (2005). [CrossRef]
  4. C. B. Schaffer, A. O. Jamison, and E. Mazur, "Morphology of femtosecond laser-induced structural changes in bulk transparent materials," Appl. Phys. Lett. 84, 1441 - 1443 (2004). [CrossRef]
  5. A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, and H. Lubatschowski, "Nonlinear side effects of fs pulses inside corneal tissue during photodisruption," Appl. Phys. B 74, 419-425 (2002). [CrossRef]
  6. A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar and D. E. Ingber, "Pulse energy dependence of subcellular dissection by femtosecond laser pulses," Opt. Express 13, 3690-3696 (2005). [CrossRef] [PubMed]
  7. K. König, I. Riemann, and W. Fritzsche, "Nanodissection of human chromosomes with near-infrared femtosecond laser pulses," Opt. Lett. 26, 819 (2001). [CrossRef]
  8. M. F. Yanik, H. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, "Neurosurgery: Functional regeneration after laser axotomy," Nature 432, 822 (2004). [CrossRef] [PubMed]
  9. Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell and C. R. Thomson, "Theory and Simulation on the threshold of water breakdown induced by Focused Ultrashort Laser Pulses," IEEE J. Quantum. Electron. 33, 127-137 (1997). [CrossRef]
  10. W. Liu, O. Kosareva, L. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov and S. L. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215-229 (2003). [CrossRef]
  11. S. Chi and Q. Guo, "Vector theory of self-focusing of an optical beam in Kerr media," Opt. Lett. 20, 1598-1600 (1995). [CrossRef] [PubMed]
  12. G. Fibich and B. Ilan, "Vectorial and random effects in self-focusing and in multiple filamentation," Physica D 157, 112-146 (2001). [CrossRef]
  13. M. Kolesik, J. V. Moloney and M. Mlejnek, "Unidirectional Optical Pulse Propagation Equation," Phys. Rev. Lett. 89, 283902-1-4 (2002). [CrossRef]
  14. M. Kolesik and J.V. Moloney, "Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations," Phys. Rev. E 70, 036604-1-11 (2004). [CrossRef]
  15. B. Richards and E. Wolf, "Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System," Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  16. A. Vogel, J. Noack, G. Hüttman and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissue," Appl. Phys. B 81, 1015-1047 (2005). [CrossRef]
  17. F. Williams, S. P. Varma and S. Hillenius, "Liquid water as a lone-pair amorphous semiconductor," J. Chem. Phys. 64, 1549-1554 (1976). [CrossRef]
  18. B. Rethfeld, "Unified model for the free-electron avalanche in laser-irradiated dielectrics," Phys. Rev. Lett. 92, 187401-1-4 (2004).
  19. B. Rethfeld, "Free-electron generation in laser-irradiated dielectrics," Phys. Rev. B 73, 035101-6 (2006). [CrossRef]
  20. L. V. Keldysh, "Ionization in the field of a strong electromagnetic wave," Sov. Phys. JETP 20, 1307 (1965).
  21. M. Gu, Advanced Optical Imaging Theory, Springer Series in Optical Sciences, (Springer Berlin, Heidelberg, New York 2000).
  22. J. E. Rothenberg, "Pulse splitting during self-focusing in normally dispersive media," Opt. Lett. 17, 583-585 (1992). [CrossRef] [PubMed]
  23. Y. M. Engelberg and S. Ruschin, "Fast method for physical optics propagation of high-numerical-aperture beams," J. Opt. Soc. Am. A 21, 2135-2145 (2004). [CrossRef]
  24. P. Chernev and V. Petrov, "Self-focusing of light pulses in the presence of normal group-velocity dispersion," Opt. Lett. 17, 172-174 (1992). [CrossRef] [PubMed]
  25. T. Brabec and F. Krausz, "Nonlinear Optical Pulse Propagation in the Single-Cycle Regime," Phys. Rev. Lett. 78,3282-3285 (1997). [CrossRef]
  26. The International Association for the Properties of Water and Steam, "Release on the Refractive Index of Ordinary Water Substance as a Function of Wavelength, Temperature and Pressure," (1977) http://www.iapws.org/relguide/rindex.pdf.
  27. G. P. Agraval, Nonlinear Fiber Optics, Academic Press, (San Diego, London, Boston, New York, Sydney, Tokyo, Toronto, 1995).
  28. C. DeMichelis, "Laser induced gas breakdown: A bibliographical review," IEEE J. Quantum. Electron. 5, 188-202 (1969). [CrossRef]
  29. P. K. Kennedy, "A First-Order Model for Computation of Laser-Induced Breakdown Thresholds in Ocular and Aqueous Media: Part I-Theory," IEEE J. Quantum. Electron. 31, 2241-2249 (1995). [CrossRef]
  30. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995). [CrossRef] [PubMed]
  31. L. Sudrie, A. Couairon, M. Franco, B. Lammouroux, B. Prade, S. Tzortzakis and A. Mysyrowicz, "Femtosecond laser-induced damage and filamentary propagation in fused silica," Phys. Rev. Lett. 89, 186601-1- 4 (2002). [CrossRef]
  32. A. Couairon, L. Sudrie, M. Franco, B. Prade and A. Mysyrowicz, "Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses," Phys. Rev. B 71, 125435-1-11 (2005). [CrossRef]
  33. A. Kaiser, B. Rethfeld, M. Vicanek and G. Simon, "Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses," Phys. Rev. B. 61, 11437-11450 (2000). [CrossRef]
  34. N. Bloembergen, "Laser-induced electric breakdown in solids," IEEE J. Quantum. Electron. 10, 375-386 (1974). [CrossRef]
  35. L. V. Keldysh, "Kinetic theory of impact ionization in semiconductors," Sov. Phys. JETP 37, 509-518 (1960).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited