OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 9 — Sep. 26, 2007

Corrugated metal-coated tapered tip for scanning near-field optical microscope

Tomasz J. Antosiewicz and Tomasz Szoplik  »View Author Affiliations

Optics Express, Vol. 15, Issue 17, pp. 10920-10928 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (740 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper addresses an important issue of light throughput of a metal-coated tapered tip for scanning near-field microscope (SNOM). Corrugations of the interface between the fiber core and metal coating in the form of parallel grooves of different profiles etched in the core considerably increase the energy throughput. In 2D FDTD simulations in the Cartesian coordinates we calculate near-field light emitted from such tips. For a certain wavelength range total intensity of forward emission from the corrugated tip is 10 times stronger than that from a classical tapered tip. When realized in practice the idea of corrugated tip may lead up to twice better resolution of SNOM.

© 2007 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.5810) Microscopy : Scanning microscopy
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(350.4600) Other areas of optics : Optical engineering

ToC Category:

Original Manuscript: June 13, 2007
Revised Manuscript: July 24, 2007
Manuscript Accepted: July 30, 2007
Published: August 15, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Tomasz J. Antosiewicz and Tomasz Szoplik, "Corrugated metal–coated tapered tip for scanning near–field optical microscope," Opt. Express 15, 10920-10928 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  2. E. H. Synge, "A suggested method for extending the microscopic resolution into the ultramicroscopic region," Phil. Mag. 6, 356 (1928).
  3. E. A. Ash and G. Nichols, "Super-resolution aperture scanning microscope," Nature 237, 510-512 (1972). [CrossRef] [PubMed]
  4. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution ?/20," Appl. Phys. Lett. 44, 651-653 (1984). [CrossRef]
  5. U. Dürig, D.W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," J. Appl. Phys. 59, 3318-3327 (1986). [CrossRef]
  6. L. Novotny, D. Pohl, and B. Hecht, "Scanning near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Opt. Lett. 20, 970-972 (1995). [CrossRef] [PubMed]
  7. J. H. Kim and K. B. Song, "Recent progress of nano-technology with NSOM," Micron 38, 409-426 (2007). [CrossRef]
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  9. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000). [CrossRef]
  10. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002). [CrossRef] [PubMed]
  11. F. J. Garcia de Abajo, "Light transmission through a single cylindrical hole in a metallic film," Opt. Express 10, 1475-1484 (2002) [PubMed]
  12. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  13. F. I. Baida, D. Van Labeke, and B. Guizal, "Enhanced Confined Light Transmission by Single Subwavelength Apertures in Metallic Films," Appl. Opt. 42, 6811-6815 (2003). [CrossRef] [PubMed]
  14. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  15. L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4196 (1994). [CrossRef]
  16. S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000). [CrossRef]
  17. K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, "Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes," Opto-Electron.Rev. 14, 233-241 (2006). [CrossRef]
  18. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys . 98, 011101-1-10 (2005). [CrossRef]
  19. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005). [CrossRef]
  20. T. J. Antosiewicz and T. Szoplik, "Description of near- and far-field light emitted from a metal-coated tapered fiber tip," Opt. Express 15, 7845-7852 (2007). [CrossRef] [PubMed]
  21. E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005). [CrossRef]
  22. K. Tanaka, M. Tanaka, and T. Sugiyama, "Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons," Opt. Express 14, 832-846 (2006). [CrossRef] [PubMed]
  23. M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  24. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005). [CrossRef]
  25. W. Nakagawa, L. Vaccaro, and H.P. Herzig, "Analysis of mode coupling due to spherical defects in ideal fully metal-coated scanning near-field optical microscopy probes," J. Opt. Soc. Am. A 23, 1096-1105 (2006). [CrossRef]
  26. Z. Ma, J.M. Gerton, L.A. Wade, and S.R. Quake, "Fluorescence Near-Field Microscopy of DNA at Sub-10 nm Resolution," Phys. Rev. Lett. 97, 260801 (2006). [CrossRef]
  27. W. Ding, S.R. Andrews, and S.A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007). [CrossRef]
  28. S.T. Huntington, B.C. Gibson, J. Canning, K. Digweed-Lyytikäinen, J.D. Love, and V. Steblina, "A fractal-based fibre for ultra-high throughput optical probes," Opt. Express 15, 2468-2475 (2007). [CrossRef] [PubMed]
  29. C. Obermüller and K. Karrai, "Far field characterization of diffracting circular aperture," Appl. Phys. Lett. 67, 3408-3410 (1995). [CrossRef]
  30. A. Gademann, I.V. Shvets, and C. Durkan, "Study of polarization-dependant energy coupling between near-field optical probe and mesoscopic metal structure," J. Appl. Phys. 95, 3988-3993 (2004). [CrossRef]
  31. T. Szoplik, W. M. Saj, J. Pniewski, and T.J. Antosiewicz, "Transmission of radially polarized light beams through nanoholes," Abstracts of the EOS Topical Meeting on Nanophotonics, Metamaterials and Optical Microcavities, 16-19 October 2006, Paris, France.
  32. A. Drezet, S. Huant, and J. C. Woehl, "In situ characterization of optical tips using single fluorescent nanobeads," J. Lumin. 107, 176-181 (2004). [CrossRef]
  33. W. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express 13, 4818-4827 (2005). [CrossRef] [PubMed]
  34. C. Sönnichsen, Plasmons in metal nanostructures, PhD Thesis (Ludwig-Maximilians-Universtät München, München, 2001).
  35. P. Johnson and R. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  36. N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited