OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3µm wavelength

Ruikang K Wang and Sawan Hurst  »View Author Affiliations


Optics Express, Vol. 15, Issue 18, pp. 11402-11412 (2007)
http://dx.doi.org/10.1364/OE.15.011402


View Full Text Article

Enhanced HTML    Acrobat PDF (562 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical micro-angiography (OMAG) was developed to achieve volumetric imaging of the microstructures and dynamic cerebrovascular blood perfusion in mice with capillary level resolution and high signal-to-background ratio. In this paper, we present a high-speed and high-sensitivity OMAG imaging system by using an InGaAs line scan camera and broadband light source at 1.3 µm wavelength for enhanced imaging depth in tissue. We show that high quality imaging of cerebrovascular blood perfusion down to capillary level resolution with the intact skin and cranium are obtained in vivo with OMAG, without the interference from the blood perfusion in the overlaying skin. The results demonstrate the potential of 1.3µm OMAG for high-speed and high-sensitivity imaging of blood perfusion in human and small animal studies.

© 2007 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 25, 2007
Revised Manuscript: August 19, 2007
Manuscript Accepted: August 23, 2007
Published: August 24, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Ruikang K. Wang and Sawan Hurst, "Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength," Opt. Express 15, 11402-11412 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-18-11402


Sort:  Year  |  Journal  |  Reset  

References

  1. D. M. McDonald and P. L. Choyke, "Imaging of angiogenesis: from microscope to clinic," Nat. Med. 9, 713-725 (2003). [CrossRef] [PubMed]
  2. D. Malonek, U Dirnagl, U Lindauer, K Yamada, I Kanno, and A Grinvald, "Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation," Proc. Natl. Acad. Sci. USA 94,14826-14831 (1997). [CrossRef]
  3. K. Hossmann, "Viability thresholds and the penumbra of focal ischemia," Ann Neurol 36, 557-565 (1994). [CrossRef] [PubMed]
  4. T. P. Padera, B. R. Stoll, P. T. So, and R. K. Jain, "Conventional and high speed intravital multiphoton laser scanning microscopy of microvasculature, lymphatics, and leukocyte-endothelial interactions," Mol. Imaging 1, 9-15 (2002). [CrossRef]
  5. R. K. Jain, "Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function," J. Controlled Release 74, 7-25 (2001). [CrossRef]
  6. O. Sakurada, C. Kennedy, J. Jehle, J. D. Brown, G. L. Carbin, and L. Sokoloff, "Measurement of local cerebral blood flow with iodo [14C] antipyrine," Am J. Physiol. 234, H59-66 (1978). [PubMed]
  7. F. Calamante, D. L. Thomas, G. S. Pell, J. Wiersma, and R. Turner, "Measuring cerebral blood flow using magnetic resonance imaging techniques," J Cereb Blood Flow Metab 19, 701-735 (1999). [CrossRef] [PubMed]
  8. W. D. Heiss, R. Graf, K. Wienhard, J. Lottgen, R. Saito, T. Fujita, G. Rosner, and R. Wagner, "Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats," J Cereb Blood Flow Metab 14, 892-902 (1994). [CrossRef] [PubMed]
  9. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324, 361-364 (1986). [CrossRef] [PubMed]
  10. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001). [CrossRef] [PubMed]
  11. A. N. Nielsen, M. Fabricius, and M. Lauritzen. "Scanning laser-Doppler flowmetry of rat cerebral circulation during cortical spreading depression," J. Vasc. Res. 37, 513-522 (2000). [CrossRef]
  12. X. D. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. Wang, "Non-invasive laser-induced photoacoustic tomography for structural and functional imaging of the brain in vivo," Nat. Biotechnol. 21, 803-806 (2003). [CrossRef] [PubMed]
  13. H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006). [CrossRef] [PubMed]
  14. T. Misgeld and M. Kerschensteiner, "In vivo imaging of the diseased nervous system." Nat. Rev. Neurosci. 7, 449-463 (2006). [CrossRef] [PubMed]
  15. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. Hanson, and A. Gruber, "Three dimensional optical angiography," Opt. Express 15, 4083-4097 (2007). [CrossRef] [PubMed]
  16. G. Hausler and M. W. Lindner, "Coherence radar and Spectral radar- new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  17. Z. P. Chen, T. E. Milner, S. Srinivas,  et al., "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997). [CrossRef] [PubMed]
  18. B. R. White, M. C. Pierce, N. Nassif,  et al., "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003). [CrossRef] [PubMed]
  19. R. K. Wang and Z. H. Ma, "Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography," Opt. Lett. 31, 3001-3003 (2006). [CrossRef] [PubMed]
  20. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, "Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue," Appl. Phys. Lett. 89, 144103 (2006). [CrossRef]
  21. Y. Pan, and D. L. Farkas, "Non-invasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions," J. Biomed. Opt. 3, 446-465 (1998). [CrossRef]
  22. B. E. Bouma and G. J. Tearney, "Clinical imaging with optical coherence tomography," Acad. Radiol. 9, 942-953 (2002). [CrossRef] [PubMed]
  23. L. Carrion, M. Lestrade, Z. Xu, G. Touma, R. Maciejko, and M. Bertrand, "Comparative study of optical sources in the near infrared for optical coherence tomography applications," J. Biomed. Opt. 12, 014017 (2007). [CrossRef] [PubMed]
  24. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11, 3598-3604 (2003). [CrossRef] [PubMed]
  25. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm", Opt. Express 13, 3931-3944 (2005). [CrossRef] [PubMed]
  26. R. K. Wang, "In vivo full range complex Fourier Domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007). [CrossRef]
  27. R. K. Wang and Z. H. Ma, "A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006). [CrossRef] [PubMed]
  28. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral Interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000). [CrossRef]
  29. R. K. Wang, "Modelling optical properties of soft tissue by Fractal Distribution of Scatters," J. Mod. Opt. 47, 103-120 (2000)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2394 KB)      QuickTime
» Media 2: AVI (2584 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited