OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Generating small-scale structures from large-scale ones via optical near-field interactions

M. Naruse, T. Yatsui, H. Hori, K. Kitamura, and M. Ohtsu  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 11790-11797 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical near-fields, which appear in the vicinity of structures when irradiated with light, exhibit a hierarchical nature, meaning that the degree of localization of optical near-fields at a given point is related to the scale of the structure involved in this process. Therefore, if we could make optically induced fabrication processes selectively localized in the near-field region, we could generate a smaller-scale structure even from a larger-scale one via optical near-field interactions. We demonstrate the theoretical basis of this with an angular spectrum analysis of optical near-fields. We also experimentally demonstrate such principles by using ZnO nanoneedles fabricated through metal-organic vapor phase epitaxy (MOVPE) followed by a photo-induced MOVPE procedure where smaller-scale generated structures were clearly observed with the help of light irradiation. We also observed that the generated fine structures followed a power-law distribution, indicating that fractal structures emerged via optical near-field interactions.

© 2007 Optical Society of America

OCIS Codes
(140.3450) Lasers and laser optics : Laser-induced chemistry
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: July 13, 2007
Revised Manuscript: August 29, 2007
Manuscript Accepted: August 29, 2007
Published: August 31, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

M. Naruse, T. Yatsui, H. Hori, K. Kitamura, and M. Ohtsu, "Generating small-scale structures from large-scale ones via optical near-field interactions," Opt. Express 15, 11790-11797 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8, 839-862 (2002). [CrossRef]
  2. For example, T. Yatsui, M. Kourogi, K. Tsutsui, J. Takahashi, and M. Ohtsu, "High-density-speed optical near-field recording-reading with a pyramidal silicon probe on a contact slider," Opt. Lett. 25, 1279-1281 (2000). [CrossRef]
  3. S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, "Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles," Opt. Lett. 29, 1390-1392 (2004). [CrossRef] [PubMed]
  4. T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, "Demonstration of a nanophotonic switching operation by optical near-field energy transfer," Appl. Phys. Lett. 82, 2957-2959 (2003). [CrossRef]
  5. M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, "Nanophotonic Computing Based on Optical Near-Field Interactions between Quantum Dots," IEICE Trans. Electron. E 88-C, 1817-1823 (2005). [CrossRef]
  6. 6. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 1-4 (2003). [CrossRef]
  7. T. Yatsui, G.-C. Yi, and M. Ohtsu, "Integration and evaluation of nanophotonic device," in Progress in Nano-Electro-Optics V, M. Ohtsu ed. (Springer, Berlin, 2006), 63-107.
  8. T. Yatsui, S. Takubo, J. Lim, W. Nomura, M. Kourogi, and M. Ohtsu, "Regulating the size and position of deposited Zn nanoparticles by optical near-field desorption using size-dependent resonance," Appl. Phys. Lett. 83, 1716-1718 (2003). [CrossRef]
  9. H. Yonemitsu, T. Kawazoe, K. Kobayashi, and M. Ohtsu, "Nonadiabatic photochemical reaction and application to photolithography," J. Luminescence 122-123, 230-233 (2007). [CrossRef]
  10. B. Skoric, S. Maubach, T. Kevenaar, and P. Tuyls, "Information-theoretic analysis of capacitive physical unclonable functions," J. Appl. Phys. 100, 024902 1-11 (2006).
  11. T. Yatsui, W. Nomura, and M. Ohtsu, "Self-assembly of size- and position-controlled ultralong nanodot chains using near-field optical desorption," Nano. Lett. 5, 2548- 2551 (2005). [CrossRef] [PubMed]
  12. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  13. T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, "Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording," J. Appl. Phys. 95, 3901-3906 (2004). [CrossRef]
  14. T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001). [CrossRef]
  15. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 1-4 (2002). [CrossRef]
  16. E. Wolf and M. Nieto-Vesperinas, "Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences," J. Opt. Soc. Am. A. 2, 886-890 (1985). [CrossRef]
  17. T. Inoue and H. Hori, "Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode," in Progress in Nano-Electro-Optics IV, M. Ohtsu ed. (Springer Verlag, 2005), 127-199.
  18. M. Naruse, T. Inoue, and H. Hori, "Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum," Jpn. J. Appl. Phys.in press.
  19. W. I. Park, G.-C Yi, M. Kim, and S. J. Pennycook, "ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy," Adv. Mater. 14, 1841-1843 (2002). [CrossRef]
  20. T. Yatsui, T. Kawazoe, M. Ueda, Y. Yamamoto, M. Kourogi, and M. Ohtsu, "Fabrication of nanometric single zinc and zinc oxide dots by the selective photodissociation of adsorption-phase diethylzinc using a nonresonant optical near field," Appl. Phys. Lett. 81, 3651-3653 (2002). [CrossRef]
  21. Y. Kuniya, Y. Deguchi, and M. Ichida, "Physicochemical properties of dimethylzinc, dimethylcadmium and diethylzinc," Appl. Org. Chem. 5, 337-348 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited