OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 3 — Mar. 7, 2007

In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging

M. Lesaffre, F. Jean, F. Ramaz, A.C. Boccara, M. Gross, P. Delaye, and G. Roosen  »View Author Affiliations

Optics Express, Vol. 15, Issue 3, pp. 1030-1042 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (389 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The measurement of optical contrasts within thick biological tissues can be performed with the hybrid technique of acousto-optic imaging, but it has been shown that an acquisition rate in the 1 - 10kHz range is required for a good efficiency. This comes from the interferometric nature of the signal, blurred by speckle decorrelation in a time τc , due to a decrease of the speckle pattern contrast at the exit of the sample. An holographic setup that associates a fast and large area single photodetector and a photorefractive crystal, can measure in real-time the acousto-optic signal: this is the so-called self-adaptive wavefront holography technique. Nevertheless, it is essential to size the photorefractive response time (τPR ) of the crystal with τc in order to optimize the signal-to-noise ratio of the measurement. This time mainly depends on the overall light intensity within the crystal. We have developed an original in situ method to determine τPR with the combination of acoustic pulses and a frequency de-tuning of the reference beam. We can measure precisely this time but also monitor it according to a theoretical model that we have previously described. We are able to adapt the response time of the setup to the decorrelation time of the medium under study.

© 2007 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.2880) Holography : Holographic interferometry
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.7050) Medical optics and biotechnology : Turbid media
(290.7050) Scattering : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 2, 2006
Revised Manuscript: November 17, 2006
Manuscript Accepted: November 27, 2006
Published: February 5, 2007

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, "In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging," Opt. Express 15, 1030-1042 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Gibson, J. C. Hebden, S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol 50, 1-43 (2005). [CrossRef]
  2. L. H. Wang, S. L. Jacques and X. Zhao, "Continuous wave ultrasonic modulation of scattered light to image objcets in turbid media," Opt. Lett. 20, 629 (1995). [CrossRef] [PubMed]
  3. W. Leutz and G. Maret, "Ultrasonic modulation of multiply scattered light," Physica B 204, 14 (1995). [CrossRef]
  4. L. Wang, "Mechanisms of ultrasonic modulation of multiply scattered coherent light: a analytic model," Phys. Rev. Lett. 87, 1 (2001). [CrossRef]
  5. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, "Acousto-optic tomography with multiple scattered light," J. Opt. Soc. Am. B 14, 1151-1158 (1997). [CrossRef]
  6. A. Lev and B. Sfez, "In vivo demonstration of ultrasound-modulated light technique," J. Opt. Soc. Am. A 20, 2347-2354 (2003). [CrossRef]
  7. M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, "Heterodyne detection of multiply scattered monochromatic light with a multipixel detector," Opt. Lett. 30, 1357 (2005). [CrossRef] [PubMed]
  8. C. Ayata, A. K. Dunn,Y. Gursoy-Ozdemir,Z. Huang,D. A. Boas and M. A. Moskowitz, "Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and Ischemic Mouse Cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004). [CrossRef] [PubMed]
  9. M. Atlan, M. Gross, T. Vitalis, A. Rancillac, B. C. Forget, and A. K. Dunn, "Frequency-domain, wide-field laser doppler in vivo imaging," Opt. Lett. submitted 3/21/2006, accepted for publication (2006).
  10. A. Lev, Z. Kotler, and B. Sfez, "Ultrasound tagged light imaging in turbid media in a reflectance geometry," Opt. Lett. 25, 378 (2000). [CrossRef]
  11. A. L. and B. G. Sfez, "Direct, noninvasive detection of photon density in turbid media," Opt. Lett. 27, 473 (2002). [CrossRef]
  12. M. Gross, P. Goy, and M. Al-Koussa, "Shot-noise detection of ultrasound-tagged photons in ultrasoundmodulated optical imaging," Opt. Lett. 28, 2482-2484 (2003). [CrossRef] [PubMed]
  13. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, "Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection," Opt. Lett. 30, 1360-1362 (2005). [CrossRef] [PubMed]
  14. G. Yao and L. V. Wang, "theoretical and experimental studies of ultrasound modulated optical tomography in biological tissues," Appl. Opt. 39, 659 (2000). [CrossRef]
  15. S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, "Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing," Opt. Lett. 24, 181 (1999).Q1 [CrossRef]
  16. F. Ramaz, B. C. Forget,M. Atlan, A. C. Boccara,M. Gross, P. Delaye, and G. Roosen, "Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues," Opt. Express 12, 5469-5474 (2004). [CrossRef] [PubMed]
  17. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, "Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect," Opt. Lett. 29, 2509 (2004). [CrossRef] [PubMed]
  18. E. Bossy, L. Sui, T. W. Murray, and R. A. Roy, "Fusion of conventional ultrasound imaging and acousto-optic sensing by use of a standard pulsed-ultrasound scanner," Opt. Lett. 30, 744 (2005). [CrossRef] [PubMed]
  19. F. J. Blonigen, A. Nieva, C. DiMarzio, S. Manneville, L. Sui, G. Maguluri, T.W. Murray, and R. A. Roy, "Computations of the acoustically induced phase shifts of optical paths in acoustophotonic imaging with photorefractivebased detection," Appl. Opt. 44, 3735 (2005). [CrossRef] [PubMed]
  20. L. Sui, R. A. Roy, C. DiMarzio, and T. W. Murray, "Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect," Appl. Opt. 44, 4041 (2005). [CrossRef] [PubMed]
  21. M. Gross, F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, P. Delaye, and G. Roosen, "Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media," Opt. Express 13, 7097-7112 (2005). [CrossRef] [PubMed]
  22. S. Bian and J. Frejlich, "Photorefractive response time measurement in GaAs crystals by phase modulation in two wave mixing," Opt. Lett. 19, 1702-1704 (1994) [CrossRef] [PubMed]
  23. B. Sugg, K. V. Shcherbin, and J. Frejlich, enquoteDetermination of the time constant of fast photorefarctive materials using the phase modulation technique, Appl. Phys. Lett. 66, 3257-3259 (1995). [CrossRef]
  24. G. Brost, J. Norman, S. Odoulov, K. Shcherbin, A. Shumelyuk, and V. Tarano, "Gain Spectra of beam coupling in photorefractive semiconductors," J. Opt. Soc. Am. B,  15, 2083-2091 (1998). [CrossRef]
  25. P. Delaye, S. de Rossi, and G. Roosen, "High amplitude vibrations detection on rough surfaces using a photorefractive velocimeter," Opt. and Las. in Eng. 33, 335-347 (2000). [CrossRef]
  26. B. Campagne, A. Blouin, L. Pujol, and J. P. Monchalin, "Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal," Rev. Sc. Inst. 725, 2478-2482 (2001).Q2 [CrossRef]
  27. P. Delaye, L. A. de Montmorillon, and G. Roosen, "Transmission of time modulated optical signals through an absorbing photorefractive crystal," Opt. Commun. 118, 154 (1995). [CrossRef]
  28. P. Yeh, "Introduction to Photorefractive Nonlinear Optics" Wiley eds, ISBN: 0-471-58692-7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited