OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 3 — Mar. 7, 2007

Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye

Quanquan Mu, Zhaoliang Cao, Dayu Li, Lifa Hu, and Li Xuan  »View Author Affiliations

Optics Express, Vol. 15, Issue 4, pp. 1946-1953 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (465 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on a simple eye model system, a high resolution adaptive optics retina imaging system was built to demonstrate the availability of using liquid crystal devices as a wave-front corrector for both low and high order aberrations. Myopia glass was used to introduce large low order aberrations. A fiber bundle was used to simulate the retina. After correction, its image at different diopters became very clear. We can get a root mean square(RMS) correction precision of lower than 0.049λ (λ =0.63μm) for over to 10 diopters and the modulation transfer function (MTF) retains 51lp/mm, which is nearly the diffraction limited resolution for a 2.7mm pupil diameter. The closed loop bandwidth was nearly 4 Hz, which is capable to track most of the aberration dynamics in a real eye.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(230.3720) Optical devices : Liquid-crystal devices
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: November 27, 2006
Revised Manuscript: January 30, 2007
Manuscript Accepted: January 31, 2007
Published: February 19, 2007

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

Quanquan Mu, Zhaoliang Cao, Dayu Li, Lifa Hu, and Li Xuan, "Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye," Opt. Express 15, 1946-1953 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. W. Babcock, "The possibility of compensating astronomical seeing," Publ. Astron. Soc. Pac. 65, 229-236 (1953). [CrossRef]
  2. M. S. Smirnov, "Measurement of wave aberration in the human eye," Biophysics 6, 766-795 (1961).
  3. A. W. Dreher, J. F. Bille, and R. N. Weinreb, "Active optical depth resolution improvement of the laser tomographic scanner," Appl. Opt. 24, 804-808 (1989). [CrossRef]
  4. J. Liang, B. Grimm, S. Goelz, and J. Bille, "Objective measurement of the wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  5. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  6. J. Carroll, D. C. Gray, A. Roorda, and D. R. Williams, "Recent advances in Retinal Imaging with Adaptive Optics," Opt. Photonics News 16, 36-42 (2005). [CrossRef]
  7. Z. Cao, L. Xuan, L. Hu, Y. Liu, and Q. Mu, "Effects of the space-bandwidth product on the liquid-crystal kinoform," Opt. Express 13, 5186-5191 (2005). [CrossRef] [PubMed]
  8. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wave-front correction with high precision," Opt. Express 12, 6403-6409 (2004). [CrossRef] [PubMed]
  9. F. V. Martin, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998). [CrossRef]
  10. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, "Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device," Opt. Express 14, 8013-8018 (2006). [CrossRef] [PubMed]
  11. E. J. Fernandez, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001). [CrossRef]
  12. L. N. Thibos and A. Bradley, "Use of Liquid-Crystal Adaptive-Optics to alter the refractive state of the eye," Optom. Vision Sci. 74, 581-587 (1997). [CrossRef]
  13. P. M. Prieto, E. J. Fernandez, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applicaitons in the human eye," Opt. Express 12, 4059-4071 (2004). [CrossRef] [PubMed]
  14. K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, Y. Okawaa, N. Maeda, and T. Fujikado, "Live photoreceptor imaging using a prototype adaptive optics fundus camera: A preliminary result," Invest. Ophthalmol. Vis. Sci. 46, 3547 Suppl. S (2005).
  15. E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005). [CrossRef] [PubMed]
  16. T. Shirai, "Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging," Appl. Opt. 41, 4013-4023(2002). [CrossRef] [PubMed]
  17. Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001(2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited