OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 6 — Jun. 17, 2008

Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors

Limin Zhang, Feng Gao, Huiyuan He, and Huijuan Zhao  »View Author Affiliations

Optics Express, Vol. 16, Issue 10, pp. 7214-7223 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As a visualizing and quantitative method, Fluorescence Molecular Tomography (FMT) has many potential applications in biomedical field and its three-dimensional (3D) implementation is needed in both theory and practice. In this paper, we propose a 3D scheme for time-domain FMT within the normalized Born-ratio formulation. A finite element method solution to the Laplace transformed time-domain coupled diffusion equations is employed as the forward model, and the resultant linear inversions at two distinct transform-factors are solved with an algebraic reconstruction technique to separate fluorescent yield and lifetime images. The algorithm is validated using simulated data for 3D cylinder phantoms, and the spatial resolution and quantitativeness of the reconstruction assessed. We demonstrate that the proposed approach can accurately retrieve the positions and shapes of the targets with high spatial resolution and quantitative accuracy, and tolerate a signal-to-noise ratio down to 25dB by appropriately choosing the transform factors.

© 2008 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 4, 2008
Revised Manuscript: March 13, 2008
Manuscript Accepted: April 29, 2008
Published: May 5, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Limin Zhang, Feng Gao, Huiyuan He, and Huijuan Zhao, "Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors," Opt. Express 16, 7214-7223 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999). [CrossRef] [PubMed]
  2. V. Ntziachristos, C-H Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002). [CrossRef] [PubMed]
  3. Achilefu, R. Dorshow, J. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000). [CrossRef] [PubMed]
  4. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003). [CrossRef] [PubMed]
  5. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002). [CrossRef]
  6. S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004). [CrossRef] [PubMed]
  7. H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulation," Appl. Opt. 37, 5337-5343 (1998). [CrossRef]
  8. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-94 (2003). [CrossRef] [PubMed]
  9. A. X. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005). [CrossRef] [PubMed]
  10. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Pans. 99, -9624 (2002) [CrossRef]
  11. A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005). [CrossRef] [PubMed]
  12. B. Yuan and Q. Zhu, "Separately reconstructing the structural and functional parameters of a fluorescent inclusion embedded in a turbid medium," Opt. Express 14, 7172-7187 (2006). [CrossRef]
  13. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," Opt. Soc. Am. A 21, 1035-1049 (2004). [CrossRef]
  14. A. Soubret and Vasillis Ntziachristos, "Fluorescence molecular tomography in the presence of background fluorescence," Phys. Med. Biol. 51, 3983-4001 (2006). [CrossRef] [PubMed]
  15. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescent-lifetime-based tomography for turbid media," Opt. Lett. 30, 3347-3349 (2005). [CrossRef]
  16. F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomogrphy," Opt. Express 14, 7109-7124 (2006). [CrossRef] [PubMed]
  17. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, A. Sardini, and P. M. W. French, and S. R. Arridge "Fluorescence lifetime tomography by using time-gated data acquisition," Appl. Opt. 46, 7384-7391(2007). [CrossRef] [PubMed]
  18. S. Lam, F. Lesage, and X. Intes, "Time domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005). [CrossRef] [PubMed]
  19. F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002). [CrossRef] [PubMed]
  20. H. J. Zhao. Zhao, F . Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005). [CrossRef]
  21. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002). [CrossRef]
  22. F. Gao, Y. Tanikawa, H. J. Zhao, and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002). [CrossRef] [PubMed]
  23. V. Y. Soloviev, J. McGinty, K. B. Tahir, M. A. A. Neil, A. Sardini, J. V. Hajnal, S. R. Arridge, and P. M. W. French, "Fluorescence lifetime tomography of live cells expressing enhanced green fluorescent protein embedded in a scattering medium exhibiting background autofluorescence," Opt. Lett. 32, 2034-2036 (2007). [CrossRef] [PubMed]
  24. J. Wu, "Convolution picture of the boundary conditions in photon migration and its implications in time-resolved optical imaging of biological tissues," J. Opt. Soc. Am. A 14, 280-287 (1997). [CrossRef]
  25. A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005). [CrossRef] [PubMed]
  26. A. C. Kak and M. Slaney, Principle of Computerized Tomography Imaging (IEEE Press, New York, 1988).
  27. J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, "Fluorescence tomography imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA. 94, 8783-8788 (1997). [CrossRef] [PubMed]
  28. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "IN vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950(1999). [CrossRef]
  29. J. H. Lee, A. Joshi, and E. M. Sevick-Muraca, "Full adaptive finite element based tomography using tetrahedral dual-meshing for fluorescence enhanced optical imaging in tissue," Opt. Express 15, 6955-6975 (2007). [CrossRef] [PubMed]
  30. D. Wang, X. Song, and J. Bai, "Adaptive-mesh-based algorithm for fluorescence molecular tomography using an analytical solution," Opt. Express 15, 9722-9730 (2007). [CrossRef] [PubMed]
  31. S. C. Davis, H. Dehghani, J. Wang, S. D. Jiang, B. W. Pogue, and K. D. Paulsen, "Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization," Opt. Express 15, 4066-4082 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited