OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 10 — Sep. 22, 2008

Elemental analysis using micro Laser-induced Breakdown Spectroscopy (µLIBS) in a microfluidic platform

Yogesh Godwal, Govind Kaigala, Viet Hoang, Siu-Lung Lui, Christopher Backhouse, Ying Tsui, and Robert Fedosejevs  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 12435-12445 (2008)
http://dx.doi.org/10.1364/OE.16.012435


View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present here a non-labeled, elemental analysis detection technique that is suitable for microfluidic chips, and demonstrate its applicability with the sensitive detection of sodium (Na). Spectroscopy performed on small volumes of liquids can be used to provide a true representation of the composition of the isolated fluid. Performing this using low power instrumentation integrated with a microfluidic platform makes it potentially feasible to develop a portable system. For this we present a simple approach to isolating minute amounts of fluid from bulk fluid within a microfluidic chip. The chip itself contains a patterned thin film resistive element that super-heats the sample in tens of microseconds, creating a micro-bubble that extrudes a micro-droplet from the microchip. For simplicity a non-valved microchip is used here as it is highly compatible to a continuous flow-based fluidic system suitable for continuous sampling of the fluid composition. We believe such a non-labeled detection technique within a microfluidic system has wide applicability in elemental analysis. This is the first demonstration of laser-induced breakdown spectroscopy (LIBS) as a detection technology in conjunction with microfluidics, and represents first steps towards realizing a portable lower power LIBS-based detection system.

© 2008 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6210) Spectroscopy : Spectroscopy, atomic
(280.1545) Remote sensing and sensors : Chemical analysis

ToC Category:
Spectroscopy

History
Original Manuscript: May 13, 2008
Revised Manuscript: July 25, 2008
Manuscript Accepted: July 25, 2008
Published: August 4, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Yogesh Godwal, Govind Kaigala, Viet Hoang, Siu-Lung Lui, Christopher Backhouse, Ying Tsui, and Robert Fedosejevs, "Elemental analysis using micro Laser-induced Breakdown Spectroscopy (μLIBS) in a microfluidic platform," Opt. Express 16, 12435-12445 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-17-12435


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Melin, H. Johansson, O. Soderberg, F. Nikolajeff, U. Landegren, M. Nilsson, and J. Jarvius, "Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation," Anal. Chem. 77, 7122-7130 (2005). [CrossRef] [PubMed]
  2. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997). [CrossRef]
  3. L. J. Radziemski, "From LASER to LIBS, the path of technology development," Spectrochim. Acta Part B 57, 1109-1113 (2002). [CrossRef]
  4. R. Noll, R. Sattmann, and V. Sturm, "Laser-induced breakdown spectroscopy: a versatile tool for process control," Proc. SPIE 2248, 50-62 (1994). [CrossRef]
  5. D. Romero and J. J. Laserna, "A microanalytical study of aluminum diffusion in photovoltaic cells using imaging-mode laser-induced breakdown spectrometry," Spectrochim Acta Part B 55, 1241-1248 (2000). [CrossRef]
  6. H. Hakkanen, J. Houni, S. Kaski, and J. E. I. Korppi-Tommola, "Analysis of paper by laser-induced plasma spectroscopy," Spectrochim. Acta Part B 56, 37-742 (2001). [CrossRef]
  7. S. Morel, N. Leone, P. Adam, and J. Amouroux, "Detection of bacteria by time-resolved laser induced breakdown spectroscopy," Appl. Opt. 42, 6184-6191 (2003). [CrossRef] [PubMed]
  8. I. V. Cravetchi, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Scanning microanalysis of Al alloys by laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 59, 1439-1450 (2004). [CrossRef]
  9. G. W. Rieger, M. T. Taschuk, Y. T. Tsui, and R. Fedosejevs, "Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses," Appl. Spectrosc. 56, 689-698 (2002). [CrossRef]
  10. M. T. Taschuk, I. V. Cravetchi, Y. Y. Tsui, and R. Fedosejevs, "MicroLIBS," in Laser-Induced Breakdown Spectroscopy, J. P. Singh and N. S. Thakur, eds., Spectrochim. Acta Part B, Elsevier Science B. V. (Amsterdam, The Netherlands 2007).
  11. J. J. Zayhowski and C. Dill, "Diode-pumped passvely Q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994). [CrossRef] [PubMed]
  12. J. J. Zayhowski, "Passively Q-switched microchip lasers and applications," Rev. Laser Eng. 26, 841-846 (1998). [CrossRef]
  13. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000). [CrossRef]
  14. C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, "Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy," J. Anal. At. Spectrosc. 20, 552-556 (2005). [CrossRef]
  15. A. C. Samuels, F. C. DeLuciaJr., K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens and protein: initial studies of discrimination potential," Appl. Opt. 42, 6205-6209 (2003). [CrossRef] [PubMed]
  16. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, "Laser-induced breakdown spectroscopy detection and classification of biological aerosols," Appl. Spectrosc. 57, 1207-1215 (2003). [CrossRef] [PubMed]
  17. A. Kumar, F. Y. Yueh, S. Burgess, and J. Singh, "Characterization of malignant tissue cells by laser-induced breakdown spectroscopy," Appl. Opt. 43, 5399-5403 (2003). [CrossRef]
  18. C. W. Ng and N. H. Cheung, "Detection of sodium and potassium in single human red blood cells by 193 nm laser ablative sampling: A feasibility demonstration," Anal. Chem. 72, 247-250 (2000). [CrossRef] [PubMed]
  19. N. H. Cheung and E. S. Yeung, "Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown," Appl. Spectrosc. 47, 882-886 (1993). [CrossRef]
  20. N. H. Cheung and E. S. Yeung, "Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow," Anal. Chem. 66, 929-936 (1994). [CrossRef] [PubMed]
  21. W. F. Ho, C. W. Ng, and N. H. Cheung, "Spectrochemical analysis of liquids using laser-induced plasma emissions: effect of laser wavelength," Appl. Spectrosc. 51, 87-91 (1997). [CrossRef]
  22. N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, "Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions," Appl. Surf. Sci. 274, 127-129 (1998).
  23. O. Samek, D. C. S. Beddows, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000). [CrossRef]
  24. K. Lo and N. H. Cheung, "ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions," Appl. Spectrosc. 56, 682-688 (2002). [CrossRef]
  25. Y. Godwal, S. L. LUI, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Determination of lead in water using laser ablation-laser induced fluorescence," Spectrochim. Acta, Part B: Atomic Spectroscopy 62, 1443-1447 (2007). [CrossRef]
  26. Y. Godwal, M. T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, "Development of laser-induced breakdown spectroscopy for microanalysis applications," Laser Part. Beams 26, 95-103 (2008).
  27. G. Arca, A. Ciucci, V. Palleshi, S. Rastelli, and E. Tognoni, "Trace element analysis in water by the laser-induced breakdown spectroscopy technique," Appl. Spectrosc. 51, 1102-1105 (1997). [CrossRef]
  28. R. Knopp, F. J. Scherbaum, and J. I. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996). [CrossRef]
  29. L. R. Allain, M. Askari, D. L. Stokes, and T. V. Dinh, "Microarray sampling-platform fabrication using bubble-jet technology for a biochip system," Fresenius J. Anal. Chem. 371, 146-150 (2001). [CrossRef] [PubMed]
  30. M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005). [CrossRef]
  31. M. Fujii, T. Hamazaki, and K. Ikeda, "New thermal ink jet printhead with improved energy efficiency using silicon reactive ion etching," J. Imag. Sci. and Technol. 43, 332-338 (1999).
  32. W. A. Buskirk, D. E. Hackleman, S. T. Hall, P. H. Kanarek, R. N. Low, K. E. Trueba, and R. R. van del Poll, "Development of high-resolution thermal ink jet printhead," Hewlett-Packard J.55-60 (1988).
  33. C. H. Lee and A. Lal, "Single microdroplet ejection using an ultrasonic longitudinal mode with PZT/tapered glass capillary," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1514-1522 (2004). [CrossRef] [PubMed]
  34. N. Reis, C. Ainsley, and B. Derby, "Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors," J. Appl. Phys. 97, 094903 (2005). [CrossRef]
  35. S. J. Kim, Y. Song, P. L. Skipper, and J. Han, "Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip," Anal. Chem. 78, 8011-8019 (2006). [CrossRef] [PubMed]
  36. V. N. Hoang, "Thermal Management Strategies for Microfluidic Devices," M.Sc thesis, Electrical and Computer Engineering, (University of Alberta, Edmonton, Canada 2008).
  37. G. V. Kaigala, S. Ho, R. Penterman, and C. J. Backhouse, "Rapid prototyping of microfluidic devices with a wax printer," Lab on a Chip 7, 384-387 (2007). [CrossRef] [PubMed]
  38. Y. Ralchenko, F. C. Jou, D. E. Kelleher, A. E. Kramida, A. Musgrove, J. Reader, W. L. Wiese, and K. Olsen, "National Institute of Standards and Technology, Gaithersburg, MD.," NIST Atomic Spectra Database (version 3.1.3), [Online], Available: http://physics.nist.gov/asd3 [2007, October 2001]. (2007).
  39. C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited