OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 10 — Sep. 22, 2008

Sensitive label-free biosensing using critical modes in aperiodic photonic structures

Svetlana V. Boriskina and Luca Dal Negro  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 12511-12522 (2008)
http://dx.doi.org/10.1364/OE.16.012511


View Full Text Article

Enhanced HTML    Acrobat PDF (821 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we introduce a novel approach for optical sensing based on the excitation of critically localized modes in two-dimensional deterministic aperiodic structures generated by a Rudin-Shapiro (RS) sequence. Based on a rigorous computational analysis, we demonstrate that RS photonic structures provide a large number of resonant modes better suited for sensing applications compared to traditional band-edge and defect-localized modes in periodic photonic structures. Finally, we show that enhanced sensitivity to refractive index variations as low as Δn=0.002 in RS structures results from the extended nature of critical modes and can enable the fabrication of novel label-free optical biosensors.

© 2008 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(230.5750) Optical devices : Resonators
(290.4210) Scattering : Multiple scattering
(160.5298) Materials : Photonic crystals

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 18, 2008
Revised Manuscript: July 28, 2008
Manuscript Accepted: July 30, 2008
Published: August 4, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Svetlana V. Boriskina and Luca Dal Negro, "Sensitive label-free biosensing using critical modes in aperiodic photonic structures," Opt. Express 16, 12511-12522 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-17-12511


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Status Solidi A,  182, 541-546 (2000). [CrossRef]
  2. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004). [CrossRef]
  3. S. Xiao and N. A. Mortensen, "Highly dispersive photonic band-gap-edge optofluidic biosensors," J. Eur. Opt. Soc. 1, 06026 (2006). [CrossRef]
  4. N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluidics and Nanofluidics 4, 117-127 (2008). [CrossRef]
  5. M. R. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007). [CrossRef] [PubMed]
  6. M. R. Lee and P. M. Fauchet, "Nanoscale microcavity sensor for single particle detection," Opt. Lett. 32, 3284-3286 (2007). [CrossRef] [PubMed]
  7. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004). [CrossRef] [PubMed]
  8. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005). [CrossRef]
  9. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002). [CrossRef]
  10. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003). [CrossRef] [PubMed]
  11. W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004). [CrossRef]
  12. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007). [CrossRef] [PubMed]
  13. I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE J. Sensors 7,28-35 (2007). [CrossRef]
  14. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007). [CrossRef] [PubMed]
  15. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15, 9139-9146 (2007). [CrossRef] [PubMed]
  16. S. V. Boriskina, "Spectrally-engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis," J. Opt. Soc. Am. B 23, 1565-1573 (2006). [CrossRef]
  17. A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003). [CrossRef]
  18. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol selfassembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001). [CrossRef]
  19. C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, "Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer," Talanta 73, 358-365 (2007). [CrossRef] [PubMed]
  20. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008). [CrossRef] [PubMed]
  21. S.G. Williams, ed., Symbolic dynamics and its applications, (American Mathematical Society, 2004).
  22. M. R. Schroeder, Number Theory in Science and Communication (Springer-Verlag, 1985).
  23. P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants, (Springer-Verlag, 1990). [CrossRef]
  24. J. M. Luck, "Cantor spectra and scaling of gap widths in deterministic aperiodic systems," Phys. Rev. B 39, 5834-5849 (1989). [CrossRef]
  25. M. Queffélec, "Substitution dynamical systems-spectral analysis," in Lecture Notes in Mathematics, 1294 (Springer, 1987).
  26. M. Dulea, M. Johansson, and R. Riklund, "Localization of electrons and electromagnetic waves in a deterministic aperiodic system," Phys. Rev. B,  45, 105-114 (1992). [CrossRef]
  27. E. Macia, "The role of aperiodic order in science and technology," Rep. Prog. Phys. 69, 397-441 (2006). [CrossRef]
  28. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003). [CrossRef]
  29. L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon bandgap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004). [CrossRef]
  30. C. Rockstuhl, U. Peschel, and F. Lederer, "Correlation between single-cylinder properties and bandgap formation in photonic structures," Opt. Lett. 31, 1741-1743 (2006). [CrossRef] [PubMed]
  31. L. Moretti and V. Mocella, "Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence," Opt. Express,  15, 15314-15323 (2007). [CrossRef] [PubMed]
  32. A. Della Villa, S. Enoch, G. Tayeb, F. Capolino, V. Pierro, and V. Galdi, "Localized modes in photonic quasicrystals with Penrose-type lattice," Opt. Express 14, 10021-10027 (2006). [CrossRef] [PubMed]
  33. K. Mnaymneh and R. C. Gauthier, "Mode localization and band-gap formation in defect-free photonic quasicrystals," Opt. Express,  15, 5089-5099 (2007). [CrossRef] [PubMed]
  34. Y. Lai, Z.-Q. Zhang, C.-H. Chan, and L. Tsang, "Anomalous properties of the band-edge states in large two-dimensional photonic quasicrystals," Phys. Rev. B 76, 165132 (2007). [CrossRef]
  35. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004). [CrossRef] [PubMed]
  36. S. V. Boriskina, A. Gopinath, and L. Dal Negro, "Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures," Physica E (in the press); preprint at http://arxiv.org/abs/0807.4131
  37. L. Dal Negro, N.-N. Feng and A. Gopinath, "Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays," J. Opt. A: Pure Appl. Opt. 10064013 (2008). [CrossRef]
  38. L. Kroon, E. Lennholm, and R. Riklund, "Localization-delocalization in aperiodic systems," Phys. Rev. B 66, 094204 (2002). [CrossRef]
  39. L. Kroon and R. Riklund, "Absence of localization in a model with correlation measure as a random lattice," Phys. Rev. B,  69, 094204 (2004). [CrossRef]
  40. G. Tayeb and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A 14, 3323-3332 (1997). [CrossRef]
  41. A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, "Two-dimensional Green??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length," Phys. Rev. E,  63, 046612 (2001). [CrossRef]
  42. S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, "Efficient analysis and design of low-loss WG-mode coupled resonator optical waveguide bends," J. Lightwave Technol. 25, 2487-2494 (2007). [CrossRef]
  43. Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, "Localized modes in defect-free dodecagonal quasiperiodic photonic crystals," Phys. Rev. B 68, 165106 (2003). [CrossRef]
  44. J. D. Joannopolous, S. Johnson, R. D. Meade, and J. N. Winn, Photonic crystals: Molding the flow of light (Princeton University, Princeton, 2008).
  45. J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001). [CrossRef]
  46. S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities," Appl. Opt. 40, 570-582 (2001). [CrossRef]
  47. A. Yamilov, X. Wu, X. Liu, R. P. H. Chang, and H. Cao, "Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser," Phys. Rev. Lett. 96, 083905 (2006). [CrossRef] [PubMed]
  48. S. V. Zhukovsky, D. N. Chigrin, and J. Kroha, "Low-loss resonant modes in deterministically aperiodic nanopillar waveguides," J. Opt. Soc. Am. B 23, 2265-2272 (2006). [CrossRef]
  49. A. Sharkawy, D. Pustai, S. Shi, D. Prather, S. McBride, and P. Zanzucchi, "Modulating dispersion properties of low index photonic crystal structures using microfluidics," Opt. Express 13, 2814-2827 (2005). [CrossRef] [PubMed]
  50. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006). [CrossRef] [PubMed]
  51. R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001). [CrossRef]
  52. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D: Appl. Phys. 36, R240-R249 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited