OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 10 — Sep. 22, 2008

Analog differential-phase detection in optical coherence reflectometer

Huan-Jang Huang, Tsung-Yu Hsieh, Li-Dek Chou, Wen-Chuan Kuo, and Chien Chou  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 12847-12858 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel differential-phase optical coherence reflectometer (DP-OCR) was proposed using a low-coherence source, integrating it with an analog differential-phase decoding method. In the experiment, the DP-OCR performed a localized surface profile measurement of an optical grating (1200 lp/mm) and demonstrated its ability to measure the translation speed of a tilted mirror. Experimentally, the resolution of the axial displacement of proposed DP-OCR at 185 pm was demonstrated.

© 2008 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 30, 2008
Revised Manuscript: July 12, 2008
Manuscript Accepted: July 28, 2008
Published: August 8, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Huan-Jang Huang, Tsung-Yu Hsieh, Li-Dek Chou, Wen-Chuan Kuo, and Chien Chou, "Analog differential-phase detection in optical coherence reflectometer," Opt. Express 16, 12847-12858 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Kubota, M. Nara, and T. Yoshino, "Interferometer for measuring displacement and distance," Opt. Lett. 12, 310-312 (1987). [CrossRef] [PubMed]
  2. G. Lai and T. Yatagai, "Generalized phase-shifting interferometry," J. Opt. Soc. Am. A 8, 822-827 (1991). [CrossRef]
  3. C. Chou, J.C. Shyu, Y. C. Huang, and C. K. Yuan, "Common-path optical heterodyne profilometer: a configuration," Appl. Opt. 37, 4137-4142 (1998). [CrossRef]
  4. C. K. Hitzenberger and A. F. Fercher, "Differential phase contrast in optical coherence tomography," Opt. Lett. 24, 622-624 (1999). [CrossRef]
  5. S. Yazdanfar and J. A. Izatt, "Self-referenced Doppler optical coherence tomography," Opt. Lett. 27, 2085-2087 (2002). [CrossRef]
  6. C. Chou, C. W. Lyu, and L. C. Peng, "Polarized differential-phase laser scanning microscope," Appl. Opt. 40, 96-99 (2001). [CrossRef]
  7. J. W. Goodman, Introduction to Fourier Optics, 3rd ed., (Roberts and Company, Englewood, 2005).
  8. S. Haykin, Communication Systems, 4th Ed., (Wiley, New York, 2001).
  9. D. P. Dave and T. E. Milner, "Optical low-coherence reflectometer for differential phase measurement," Opt. Lett. 25, 227-229 (2000). [CrossRef]
  10. D. Reolon, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, "Broadband supercontinuum interferometer for high-resolution profilometry," Opt. Express 14, 128-137 (2006). [CrossRef] [PubMed]
  11. T. Dresel, G. Hausler, and H. Venzke, "Three-dimensional sensing of rough surfaces by coherence radar," Appl. Opt. 31, 919-925 (1992). [CrossRef] [PubMed]
  12. L. Deck and P. de Groot, "High-speed noncontact profiler based on scanning white-light interferometry," Appl. Opt. 33, 7334-7338 (1994). [CrossRef] [PubMed]
  13. D. Huang, E. A. Swanson, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flottee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  14. J. F. de Boer, T. E. Milner, M. C. J. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997). [CrossRef] [PubMed]
  15. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000). [CrossRef]
  16. T. H. Ko, D. C. Adler, and J. G. Fujimoto, "Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source," Opt. Express 12, 2112-2119 (2004). [CrossRef] [PubMed]
  17. C. G. Rylander, D. P. Dave, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, "Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy," Opt. Lett. 29, 1509-1511 (2004). [CrossRef] [PubMed]
  18. M. Sticker, M. Pircher, E. Gotzinger, H. Sattmann, A. F. Fercher, and C. K. Hitzenberger, "En Face imaging of single cell layers by differential phase-contrast optical coherence microscopy," Opt. Lett. 27, 1126-1128 (2002). [CrossRef]
  19. M. A. Choma, A. K. Ellerbee, and C. Yang, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005). [CrossRef] [PubMed]
  20. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005). [CrossRef] [PubMed]
  21. C. Joo, K. H. Kim, and J. F. de Boer, "Spectral-domain optical coherence phase and multiphoton microscopy," Opt. Lett. 32, 623-625 (2007). [CrossRef] [PubMed]
  22. D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007). [CrossRef] [PubMed]
  23. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001). [CrossRef] [PubMed]
  24. C. J. Pedersen, D. Huang, M. A. Shure, A. M. Rollins, "Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography," Opt. Lett. 32, 506-508, (2007). [CrossRef] [PubMed]
  25. R. E. Ziemer and W. H. Tranter, Principle of communications: Systems, modulation, and noise, (Houghton Mifflin Co., Boston, MA, 1976).
  26. C. Chou, H. K. Teng, C. C. Tsai, and L. P. Yu, "Balanced detector interferometric ellipsometer," J. Opt. Soc. Am. A,  23, 2871-2879 (2006). [CrossRef]
  27. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997). [CrossRef] [PubMed]
  28. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006). [CrossRef] [PubMed]
  29. C. Tsai, H. Wei, S. Huang, C. Lin, C. Yu, and C. Chou, "High speed interferometric ellipsometer," Opt. Express 16, 7778-7788 (2008). [CrossRef] [PubMed]
  30. D. P. Davé and T. E. Milner, "Optical low-coherence reflectometer for differential phase measurement," Opt. Lett. 25, 227-229 (2000). [CrossRef]
  31. C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Interferometric phase-dispersion microscopy," Opt. Lett. 25, 1526-1528 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited