OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 10 — Sep. 22, 2008

Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers

D.C. Benito, D.M. Carberry, S.H. Simpson, G.M. Gibson, M.J. Padgett, J.G. Rarity, M.J. Miles, and S. Hanna  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 13005-13015 (2008)
http://dx.doi.org/10.1364/OE.16.013005


View Full Text Article

Enhanced HTML    Acrobat PDF (714 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple and robust method is presented for the construction of 3-dimensional crystals from silica and polystyrene microspheres. The crystals are suitable for use as templates in the production of three-dimensional photonic band gap (PBG) materials. Manipulation of the microspheres was achieved using a dynamic holographic assembler (DHA) consisting of computer controlled holographic optical tweezers. Attachment of the microspheres was achieved by adjusting their colloidal interactions during assembly. The method is demonstrated by constructing a variety of 3-dimensional crystals using spheres ranging in size from 3 µm down to 800 nm. A major advantage of the technique is that it may be used to build structures that cannot be made using self-assembly. This is illustrated through the construction of crystals in which line defects have been deliberately included, and by building simple cubic structures.

© 2008 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.5298) Optical devices : Photonic crystals
(090.5694) Holography : Real-time holography

ToC Category:
Holography

History
Original Manuscript: June 6, 2008
Revised Manuscript: August 4, 2008
Manuscript Accepted: August 5, 2008
Published: August 11, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Citation
D. C. Benito, D. M. Carberry, S. H. Simpson, G. M. Gibson, M. J. Padgett, J. G. Rarity, M. J. Miles, and S. Hanna, "Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers," Opt. Express 16, 13005-13015 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-17-13005


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004). [CrossRef] [PubMed]
  3. M. Woldeyohannes and S. John, "Coherent control of spontaneous emission near a photonic band edge: A qubit for quantum computation," Phys. Rev. A 60, 5046-5068 (1999). [CrossRef]
  4. M. F. Yanik, S. H. Fan, M. Soljacic and J. D. Joannopoulos, "All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry," Opt. Lett. 28, 2506-2508 (2003). [CrossRef] [PubMed]
  5. L. H. Frandsen, A. Harpoth, P. I. Borel, M. Kristensen, J. S. Jensen and O. Sigmund, "Broadband photonic crystal waveguide 60 degrees bend obtained utilizing topology optimization," Opt. Express 12, 5916-5921 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5916. [CrossRef] [PubMed]
  6. P. V. Braun, S. A. Rinne and F. Garcia-Santamaria, "Introducing defects in 3D photonic crystals: State of the art," Adv. Mater. 18, 2665-2678 (2006). [CrossRef]
  7. S. H. Wu, J. Serbin and M. Gu, "Two-photon polymerisation for three-dimensional micro-fabrication," J. Photochem. Photobiol. A 181, 1-11 (2006). [CrossRef]
  8. N. Tetreault, H. Miguez and G. A. Ozin, "Silicon inverse opal - A platform for photonic bandgap research," Adv. Mater. 16, 1471-1476 (2004). [CrossRef]
  9. S. A. Rinne, F. Garcia-Santamaria and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nature Photonics 2, 52-56 (2008). [CrossRef]
  10. F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144-1147 (2002). [CrossRef]
  11. D. Erenso, A. Shulman, J. Curtis and S. Elrod, "Formation of synthetic structures with micron size silica beads using optical tweezer," J. Mod. Opt. 54, 1529-1536 (2007). [CrossRef]
  12. J. E. Curtis, B. A. Koss and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  13. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper and Z. J. Laczik, "3D manipulation of particles into crystal structures using holographic optical tweezers," Opt. Express 12, 220-226 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-220. [CrossRef] [PubMed]
  14. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper and Z. J. Laczik, "Assembly of 3-dimensional structures using programmable holographic optical tweezers," Opt. Express 12, 5475-5480 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475. [CrossRef] [PubMed]
  15. P. Jordan, H. Clare, J. Leach, J. Cooper and M. Padgett, "Permanent 3D microstructures in a polymeric host created using holographic optical tweezers," J. Mod. Opt. 51, 627-632 (2004).
  16. Y. Roichman and D. G. Grier, "Holographic assembly of quasicrystalline photonic heterostructures," Opt. Express 13, 5434-5439 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5434. [CrossRef] [PubMed]
  17. R. Agarwal, K. Ladavac, Y. Roichman, G. H. Yu, C. M. Lieber and D. G. Grier, "Manipulation and assembly of nanowires with holographic optical traps," Opt. Express 13, 8906-8912 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8906. [CrossRef] [PubMed]
  18. G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12,497-12,502 (2006). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-25-12497. [CrossRef]
  19. G. Gibson, D. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. J. Robert, M. J. Miles and M. Padgett, "Holographic assembly workstation for optical manipulation," J. Opt. A: Pure Appl. Opt. 10, 044,009 (2008). [CrossRef]
  20. D. J. Shaw, Introduction to Colloid and Surface Chemistry, 4th ed. (Butterworth-Heinemann, Oxford, 1992).
  21. P. Jenkins and M. Snowden, "Depletion flocculation in colloidal dispersions," Adv. Colloid Int. Sci. 68, 57-96 (1996).
  22. T. Cosgrove, T. M. Obey and K. Ryan, "Depletion layer measurements using nuclear magnetic resonance for silica dispersions with nonadsorbing poly(styrene-sulfonate," Colloids Surf. 65, 1-7 (1992). [CrossRef]
  23. J. W. Tavacoli, P. J. Dowding and A. F. Routh, "The polymer and salt induced aggregation of silica particles," Colloid Surf. A-Physicochem.Eng. Asp. 293, 167-174 (2007). [CrossRef]
  24. R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, New York, 1979).
  25. S.-Y. Lin, J. G. Fleming, L. R, M. M. Sigalas, R. Biswas and K. M. Ho, "Complete three-dimensional photonic bandgap in a simple cubic structure," J. Opt. Soc. Am. B 18, 32-35 (2001). [CrossRef]
  26. K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E. 58, 3896- 3908 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2274 KB)     
» Media 2: MOV (2638 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited