OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008

Quantitative interpretations of Visible-NIR reflectance spectra of blood

Yulia M. Serebrennikova, Jennifer M. Smith, Debra E. Huffman, German F. Leparc, and Luis H. García-Rubio  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 18215-18229 (2008)
http://dx.doi.org/10.1364/OE.16.018215


View Full Text Article

Enhanced HTML    Acrobat PDF (723 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper illustrates the implementation of a new theoretical model for rapid quantitative analysis of the Vis-NIR diffuse reflectance spectra of blood cultures. This new model is based on the photon diffusion theory and Mie scattering theory that have been formulated to account for multiple scattering populations and absorptive components. This study stresses the significance of the thorough solution of the scattering and absorption problem in order to accurately resolve for optically relevant parameters of blood culture components. With advantages of being calibration-free and computationally fast, the new model has two basic requirements. First, wavelength-dependent refractive indices of the basic chemical constituents of blood culture components are needed. Second, multi-wavelength measurements or at least the measurements of characteristic wavelengths equal to the degrees of freedom, i.e. number of optically relevant parameters, of blood culture system are required. The blood culture analysis model was tested with a large number of diffuse reflectance spectra of blood culture samples characterized by an extensive range of the relevant parameters.

© 2008 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 4, 2008
Revised Manuscript: October 16, 2008
Manuscript Accepted: October 21, 2008
Published: October 22, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Yulia M. Serebrennikova, Jennifer M. Smith, Debra E. Huffman, German F. Leparc, and Luis H. García-Rubio, "Quantitative interpretations of Visible-NIR reflectance spectra of blood," Opt. Express 16, 18215-18229 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-22-18215


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Smith, Y. M. Serebrennikova, D. E. Huffman, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures. Part I: Theoretical analysis and simulation of blood culture processes," Can. J. Chem. Eng. 86,947-959 (2008). [CrossRef]
  2. J. M. Steinke and A. P. Shepherd, "Reflectance measurements of hematocrit and oxyhemoglobin saturation," Am. J. Physiol. 253, H147-H153 (1987). [PubMed]
  3. S. Zhang, B. R. Soller, S. Kaur, K. Perras, and T. J. vander Salm, "Investigation of noninvasive in vivo blood hematocrit measurement using NIR reflectance spectroscopy and partial least-square regression," Appl. Spectrosc. 54, 294-299 (2000). [CrossRef]
  4. M. Johns, C. A. Giller, and H. Liu, "Determination of hemoglobin oxygen saturation from turbid media using reflectance spectroscopy with small source-detector separations," Appl. Spectrosc. 55, 1686-1693 (2001). [CrossRef]
  5. M. Meinke, I. Gersonde, M. Friebel, J. Helfmann, and G. Muller, "Chemometric determination of blood parameters using Visible-Near-Infrared spectra," Appl. Spectrosc. 59, 826-835 (2005). [CrossRef] [PubMed]
  6. G. Zonios and A. Dimou, "Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties," Opt. Express 14, 8661-8674 (2006). [CrossRef] [PubMed]
  7. K.R. Denninghoff, R. A. Chipman, and L. W. Hillman, "Oxyhemoglobin saturation measurements by green spectral shift," Opt. Lett. 31, 924-926 (2006). [CrossRef] [PubMed]
  8. J. M. Steinke and A. P. Shepherd, "Effects of temperature on optical absorbance spectra of oxy-, carboxy-, and deoxyhemoglobin," Clin. Chem. 38, 1360 -1364 (1992). [PubMed]
  9. K. A. Schenkman and W. A. Ciesielski, "Improved myoglobin saturation measurement made by partial least-square analysis of optical reflectance spectra," Appl. Spectrosc. 56, 1215-1221 (2002). [CrossRef]
  10. A. P. Shepherd, V. T. Randal, J. M. Steinke, and J. L. Schmalzel, "An oximeter for measuring hemoglobin concentration and oxygen content," Am. J. Physiol. 257, H1705-H1711 (1989). [PubMed]
  11. A. M. K. Enejder, J. Swartling, P. Aruna, and S. Andersson-Engels, "Influence of cell shape and aggregate formation on the optical properties of flowing whole blood," Appl. Opt. 42, 1384-1394 (2003). [CrossRef] [PubMed]
  12. M. S. Patterson, B. C. Wilson, and D. R. Wyman, "The propagation of optical radiation in tissue I. Models of radiation transport and their application," Las. Med. Sci. 6, 155-168 (1991). [CrossRef]
  13. I. Turcu, "Effective phase function for light scattered by blood," Appl. Opt. 45, 639-647 (2006). [CrossRef] [PubMed]
  14. S. V. Tsinopoulos, E. J. Sellountos, and D. Polyzos, "Light scattering by aggregated red blood cells," Appl. Opt. 41, 1408-1417 (2002). [CrossRef] [PubMed]
  15. L. Reynolds, C. Johnson, and A. Ishimaru, "Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters," Appl. Opt. 15, 2059-2067 (1976). [CrossRef] [PubMed]
  16. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, "Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory," Appl. Opt. 22, 2456-2462 (1983). [CrossRef] [PubMed]
  17. T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  18. R. Graaff, J. G. Aarnoudse, J. P. Zijp, M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, "Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations," Appl. Opt. 31, 1370-1376 (1992). [CrossRef] [PubMed]
  19. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999). [CrossRef]
  20. G. Zonios, J. Bykowski, and N. Kollias, "Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy," J. Invest. Dermatol. 117, 1452-1457 (2001). [CrossRef]
  21. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999). [CrossRef]
  22. M. Meinke, G. Muller, J. Helfmann, and M. Friebel, "Empirical model functions to calculate hematocrit-dependent optical properties of human blood," Appl. Opt. 46, 1742-1753 (2007). [CrossRef] [PubMed]
  23. D. J. Faber, C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation dependent absorption and scattering of blood," Phys. Rev. Lett. 93, 028102 (2004). [CrossRef] [PubMed]
  24. D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum, "Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration," Appl. Opt. 24, 1355-1364 (1985). [CrossRef] [PubMed]
  25. G. J. Streekstra, A. G. Hoekstra, E. J. Nijhof, and R. M. Heethaar, "Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction," Appl. Opt. 32, 2266-2272 (1993). [CrossRef] [PubMed]
  26. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, "Single scattering by red blood cells," Appl. Opt. 37, 7410-7418 (1998). [CrossRef]
  27. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, "T-matrix computations of light scattering by red blood cells," Appl. Opt. 37, 2735-2748 (1998). [CrossRef]
  28. S. V. Tsinopoulos and D. Polyzos, "Scattering of He-Ne laser light by an average-sized red blood cell," Appl. Opt. 38, 5499-5510 (1999). [CrossRef]
  29. J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, "Light scattering by multiple red blood cells," J. Opt. Soc. Am. A 21, 1953-1961 (2004). [CrossRef]
  30. A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52, 13-18 (2005). [CrossRef] [PubMed]
  31. J. M. Steinke and A. P. Shepherd, "Diffusion model of the optical absorbance of whole blood," J. Opt. Soc. Am. A 5, 813-822 (1988). [CrossRef] [PubMed]
  32. J. M. Steinke and A. P. Shepherd, "Comparison of Mie theory and the light scattering of red blood cells," Appl. Opt. 27, 4027-4033 (1988). [CrossRef] [PubMed]
  33. R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite-difference time-domain simulations and goniometric measurements," Appl. Opt. 38, 3651-3661 (1999). [CrossRef]
  34. R. Drezek, A. Dunn, and R. Richards-Kortum, "A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges," Opt. Express 6, 147-157 (2000). [CrossRef] [PubMed]
  35. T. C. Thorpe, M. L. Wilson, J. E. Turner, J. L. DiGuiseppi, M. Willert, S. Mirrett, and L. B. Reller, "BacT/Alert: an automated colorimetric microbial detection system," J. Clin. Microbiol. 28, 1608-1612 (1990). [PubMed]
  36. D. E. Huffman, Y. M. Serebrennikova, J. M. Smith, G. F. Leparc, and L. H. García-Rubio, "A new method for the detection of microorganisms in blood cultures: Application of the quantitative interpretation to aerobic blood cultures," J. Biomed. Opt. (to be published). [PubMed]
  37. A. Ishimaru, Wave propagation and scattering in random media (Academic Press, 1978).
  38. R. Aronson and N. Corngold, "Photon diffusion coefficient in an absorbing medium," J. Opt. Soc. Am. A 16, 1066-1071 (1999). [CrossRef]
  39. V. Twersky, "Absorption and multiple scattering by biological suspensions," J. Opt. Soc. Am. 60, 1084-1093 (1970). [CrossRef] [PubMed]
  40. M. Kerker, The Scattering of Light and other electromagnetic radiation (Academic Press, 1969).
  41. C. Bohren and D. R. Huffman, Absorption and Scattering by Small Particles (John Wiley & Sons, 1983).
  42. B. H. Zimm and W. B. Dandliker, "Theory of light scattering and refractive index of solutions of large colloidal particles," J. Phys. Chem. 58, 644-648 (1954). [CrossRef]
  43. W. J. Lentz, "Generating Bessel functions in Mie scattering calculations using continued fractions," Appl. Opt. 15, 668-671 (1976). [CrossRef] [PubMed]
  44. W. J. Wiscombe, Mie Scattering Calculations: Advances in Technique and Fast Vector-Speed Computer Codes (National Technical Information Center, 1983), PB 301388.
  45. Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, "Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data," Photochem. Photobiol. 71, 610-619 (2000). [CrossRef] [PubMed]
  46. C. E. Alupoaei and L. H. García-Rubio, "Growth behavior of microorganisms using UV-Vis spectroscopy: Escherichia coli," Biotech. Bioeng. 86, 163-167 (2004). [CrossRef]
  47. C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, "Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores," Biosens. Bioelectron. 19, 893-908 (2004). [CrossRef] [PubMed]
  48. C. E. Alupoaei and L. H. García-Rubio, "An interpretation model for the UV-VIS spectra of microorganisms," Chem. Eng. Comm. 192, 198-218 (2005). [CrossRef]
  49. I. Thormählen, J. Straub, and U. Grigull, "Refractive index of water and its dependence on wavelength temperature, and density," J. Phys. Chem. Ref. Data 14, 933-946 (1985). [CrossRef]
  50. W. G. Zijistra, A. Buursma, and W. P. Meeuwsen-van der Roest, "Absorption Spectra of Human Fetal and Adult Oxyhemoglobin, De-Oxyhemoglobin, Carboxyhemoglobin, and Methemoglobin," Clin. Chem. 37, 1633-1638 (1991).
  51. J.A. Nelder and R. Mead, "A simplex method for function minimization," Comp. J. 7, 308-313 (1965).
  52. J. L. Kuester and J. H. Mize, Optimization Techniques with Fortran (McGraw-Hill, New York, 1973).
  53. M. J. Box, "A comparison of several current optimization methods, and the use of transformations in constrained problems," Comp. J. 9, 67-77 (1966).
  54. Y. M. Serebrennikova, J. M. Smith, D. E. Huffman, and L. R. García-Rubio, Claro Scientific, LLC., 10100 Dr. Martin Luther King Jr. St., N., St. Petersburg, FL, 33716, are preparing a manuscript to be called "A new method for the detection of yeast in blood cultures".
  55. S. J. Matcher, M. Cope, and D. T. Deply, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt. 36, 386-396 (1997). [CrossRef] [PubMed]
  56. V. V. Tuchin, D. M. Zhestkov, A. N. Bashkatov, and E. A. Genina, "Theoretical study of immersion optical clearing of blood in vessels at local hemolysis," Opt. Express 12, 2966-2971 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited