OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 2 — Feb. 10, 2009

Optimizing distance image quality of an aspheric multifocal intraocular lens using a comprehensive statistical design approach

Xin Hong and Xiaoxiao Zhang  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20920-20934 (2008)
http://dx.doi.org/10.1364/OE.16.020920


View Full Text Article

Enhanced HTML    Acrobat PDF (329 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The AcrySof ReSTOR intraocular lens (IOL) is a multifocal lens with state-of-the-art apodized diffractive technology, and is indicated for visual correction of aphakia secondary to removal of cataractous lenses in adult patients with/without presbyopia, who desire near, intermediate, and distance vision with increased spectacle independence. The multifocal design results in some optical contrast reduction, which may be improved by reducing spherical aberration. A novel patent-pending approach was undertaken to investigate the optical performance of aspheric lens designs. Simulated eyes using human normal distributions were corrected with different lens designs in a Monte Carlo simulation that allowed for variability in multiple surgical parameters (e.g. positioning error, biometric variation). Monte Carlo optimized results indicated that a lens spherical aberration of -0.10 µm provided optimal distance image quality.

© 2008 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.0230) Optical devices : Optical devices

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: September 23, 2008
Revised Manuscript: November 13, 2008
Manuscript Accepted: November 16, 2008
Published: December 3, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Xin Hong and Xiaoxiao Zhang, "Optimizing distance image quality of an aspheric multifocal intraocular lens using a comprehensive statistical design approach," Opt. Express 16, 20920-20934 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-25-20920


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. Lee and M. J. Simpson, Diffractive multifocal ophthalmic lens. Alcon Laboratories, Inc. [5699142]. 12-16-0097. US.
  2. Alcon Laboratories, Inc. AcrySof ReSTOR apodized diffractive aspheric IOL [package insert]. 1-16. 2007. Fort Worth, TX, USA.
  3. G. Smith and C. W. Lu, "The spherical aberration of intra-ocular lenses," Ophthalmic Physiol Opt. 8, 287-294 (1988). [CrossRef] [PubMed]
  4. J. T. Holladay, P. A. Piers, G. Koranyi, MoorenM. van der, and N. E. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002). [PubMed]
  5. L. Wang and D. D. Koch, "Custom optimization of intraocular lens asphericity," J. Cataract Refract. Surg. 33, 1713-1720 (2007). [CrossRef] [PubMed]
  6. S. Norrby, "Sources of error in intraocular lens power calculation," J. Cataract Refract. Surg. 34, 368-376 (2008). [CrossRef] [PubMed]
  7. M. Baumeister, B. Neidhardt, J. Strobel, and T. Kohnen, "Tilt and decentration of three-piece foldable high-refractive silicone and hydrophobic acrylic intraocular lenses with 6-mm optics in an intraindividual comparison," Am. J. Ophthalmol. 140, 1051-1058 (2005). [CrossRef] [PubMed]
  8. H. H. Dietze and M. J. Cox, "Limitations of correcting spherical aberration with aspheric intraocular lenses," J. Refract. Surg. 21, S541-S546 (2005). [PubMed]
  9. L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol Opt. 22, 427-433 (2002). [CrossRef] [PubMed]
  10. T. Kohnen, "Measuring vision in refractive surgery," Cataract and Refractive Surgery Today 27, 1897-1898 (2001). [CrossRef]
  11. X. Hong, M. Karakelle, and X. Zhang. Corrections of higher order aberrations in intraocular lenses. Alcon Manufacturing,LTD. [0268453 A1]. 11-22-2007. US.
  12. R. P. Lehman, "Clinically Relevant Advantages in the Functional Performance of the AcrySof IQ IOL" (ASCRS, American Society of Cataract and Refractive Surgery Symposium, Chicago, IL, USA 2008).
  13. M. Packer, I. H. Fine, R. S. Hoffman, and P. A. Piers, "Prospective randomized trial of an anterior surface modified prolate intraocular lens," J. Refract. Surg. 18, 692-696 (2002). [PubMed]
  14. M. G. Wirtitsch, O. Findl, R. Menapace, K. Kriechbaum, C. Koeppl, W. Buehl, and W. Drexler, "Effect of haptic design on change in axial lens position after cataract surgery," J. Cataract Refract. Surg. 30, 45-51 (2004). [CrossRef] [PubMed]
  15. P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Optica Acta 29, 1027-1040 (1982). [CrossRef]
  16. M. Guillon, D. P. Lydon, and C. Wilson, "Corneal topography: a clinical model," Ophthalmic Physiol Opt. 6, 47-56 (1986). [CrossRef] [PubMed]
  17. X. Hong, N. Himebaugh, and L. N. Thibos, "On-eye evaluation of optical performance of rigid and soft contact lenses," Cataract and Refractive Surgery Today 78, 872-880 (2001).
  18. M. Simpson. Postoperative intraocular lens location: Technical Report. 013:36830, 1-20. 1998.
  19. F. M. Mutlu, A. Bayer, C. Erduman, and M. Z. Bayraktar, "Comparison of tilt and decentration between phacoemulsification and phacotrabeculectomy," Ophthalmologica 219, 26-29 (2005). [CrossRef] [PubMed]
  20. K. Hayashi, H. Hayashi, F. Nakao, and F. Hayashi, "Intraocular lens tilt and decentration after implantation in eyes with glaucoma," J. Cataract Refract. Surg. 25, 1515-1520 (1999). [CrossRef] [PubMed]
  21. International Organization for Standardization, International Standard IS0 11979-211999 Technical Corrigendum 1 Ophthalmic implants - Intraocular lenses -Part 2: Optical properties and test methods (=International Organization for Standardization, Geneva, Switzerland 1999).
  22. F. W. Campbell and D. G. Green, "Optical and retinal factors affecting visual resolution," J. Physiol. 181, 576-593 (1965). [PubMed]
  23. X. Hong. Optical aberrations of human eyes and their impact on visual performances. 2001.
  24. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of objective refraction from wavefront aberrations," Cataract and Refractive Surgery Today 4, 329-351 (2004).
  25. L. N. Thibos, "Acuity perimetry and the sampling theory of visual resolution," Optom. Vis. Sci. 75, 399-406 (1998). [CrossRef] [PubMed]
  26. N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, and D. M. Silberman, "Determining the imaging quality of intraocular lenses," J. Cataract Refract. Surg. 24, 703-714 (1998). [PubMed]
  27. I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 1881-1891 (1999). [CrossRef] [PubMed]
  28. R. Navarro, J. Santamaria, and J. Bescos, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985). [CrossRef] [PubMed]
  29. Zemax Development Corporation. Xemax ray-tracing program. 2001.
  30. N. sano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, and K. Tsubota, "Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries," J. Cataract Refract. Surg. 31, 1938-1942 (2005). [CrossRef]
  31. J. T. Holladay, "Standardizing constants for ultrasonic biometry, keratometry, and intraocular lens power calculations," J. Cataract Refract. Surg. 23, 1356-1370 (1997).
  32. D. A. Achison, "Design of aspheric intraocular lenses," Ophthalmic and Physiological Optics 11, 137-146 (1991). [CrossRef]
  33. J. Narvaez, G. Zimmerman, R. D. Stulting, and D. H. Chang, "Accuracy of intraocular lens power prediction using the Hoffer Q, Holladay 1, Holladay 2, and SRK/T formulas," J. Cataract Refract. Surg. 32, 2050-2053 (2006). [CrossRef] [PubMed]
  34. T. Olsen, "Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster," Acta Ophthalmol. Scand. 85, 84-87 (2007). [CrossRef] [PubMed]
  35. International Organization for Standardization. ISO 11979-3:2006 Ophthalmic implants -- Intraocular lenses -- Part 3: Mechanical properties and test methods. 2006.
  36. A. J. Lang, V. Lakshminarayanan, and V. Portney, "Phenomenological model for interpreting the clinical significance of the in vitro optical transfer function," J. Opt. Soc. Am. A 10, 1600-1610 (1993). [CrossRef] [PubMed]
  37. X. Zhang, M. Ye, A. Bradley, and L. Thibos, "Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 812-820 (1999). [CrossRef] [PubMed]
  38. K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006). [CrossRef] [PubMed]
  39. S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jimenez-Alfaro, "Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism," Vision Res. 48, 70-79 (2008). [CrossRef]
  40. P. Rosales and S. Marcos, "Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 509-520 (2006). [CrossRef] [PubMed]
  41. CastroA. de, P. Rosales, and S. Marcos, "Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study," J. Cataract Refract. Surg. 33, 418-429 (2007). [CrossRef]
  42. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, "Age-related changes in optical and biometric characteristics of emmetropic eyes," J. Vis. 8, 29-20 (2008). [CrossRef] [PubMed]
  43. J. Tabernero, A. Benito, E. Alcon, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 3274-3283 (2007). [CrossRef] [PubMed]
  44. P. Rosales and S. Marcos, "Customized computer model of eyes with intraocular lenses," Opt. Express 15, 2204-2218 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited