OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 4 — Apr. 23, 2008

Effect of radial polarization and apodization on spot size under tight focusing conditions

Gilad M. Lerman and Uriel Levy  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 4567-4581 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the effect of polarization and aperture geometry on the focal spot size of a high numerical aperture (NA) aplanatic lens. We show that for a clear aperture geometry, illuminating the lens by linear or circular polarization is preferable over radial polarization for spot size reduction applications. For annular aperture and objective lenses of 0.85 NA and above we give the sizes of the inner annulus which constitute the transition points to a state where the radial polarization illumination gives smaller spot size. We analyze the evolution, the profile and the effect of transverse and longitudinal field components in the focal plane, and show that they play an opposite role on the spot size in the cases of circular and radial polarization illumination. We show that in the limit of a very thin annulus the radial polarization approaches the prediction of the scalar theory at high NA, whereas the linear and circular polarizations deviate from it. We verify that the longitudinal component generated by radially polarized illumination produces the narrowest spot size for wide range of geometries. Finally, we discuss the effects of tight focusing on a dielectric interface and provide some ideas for circumventing the effects of the interface and even utilize them for spot size reduction.

© 2008 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(260.5430) Physical optics : Polarization
(350.5730) Other areas of optics : Resolution

ToC Category:
Physical Optics

Original Manuscript: January 15, 2008
Revised Manuscript: February 28, 2008
Manuscript Accepted: March 1, 2008
Published: March 19, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Gilad M. Lerman and Uriel Levy, "Effect of radial polarization and apodization on spot size under tight focusing conditions," Opt. Express 16, 4567-4581 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  2. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  3. Q. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002). [PubMed]
  4. G. M. Lerman and U. Levy "Tight focusing of space variant vector optical fields with no cylindrical symmetry of polarization," Opt. Lett. 32, 2194-2196 (2007). [CrossRef] [PubMed]
  5. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman," Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285 (2002). [CrossRef]
  6. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, "Engineering space-variant inhomogeneous media for polarization control," Opt. Lett. 29, 1718-1720 (2004). [CrossRef] [PubMed]
  7. Y. Kozawa and S. Sato, "Focusing property of a double-ring-shaped radially polarized beam," Opt. Lett. 31, 820-822 (2006). [CrossRef] [PubMed]
  8. B. Hao and J. Leger, "Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam," Opt. Express 15, 3550-3556 (2007). [CrossRef] [PubMed]
  9. A. Shoham, R. Vander, and S. G. Lipson, "Production of radially and azimuthally polarized polychromatic beams," Opt. Lett. 31, 3405-3407 (2006). [CrossRef] [PubMed]
  10. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. -P. Herzig, "Optical properties of microfabricated fully-metal-coated near-field probes in collection mode," J. Opt. Soc. Am. A 22, 1432-1441 (2005). [CrossRef]
  11. C. -C. Sun and C. -K. Liu, "Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation," Opt. Lett. 28, 99-101 (2003). [CrossRef] [PubMed]
  12. N. Hayazawa, Y. Saito, and S. Kawata, "Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy," Appl. Phys. Lett. 85, 6239 (2004). [CrossRef]
  13. Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Opt. Express 12, 3377-3382 (2004). [CrossRef] [PubMed]
  14. V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1461 (1999). [CrossRef]
  15. M. R. Beversluis, L. Novotny, and S. J. Stranick, "Programmable vector point-spread function engineering," Opt. Express 14, 2650-2656 (2006). [CrossRef] [PubMed]
  16. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. A 253, 358-379 (1959). [CrossRef]
  17. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  18. N. Davidson and N. Bokor, "High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens," Opt. Lett. 29, 1318-1320 (2004). [CrossRef] [PubMed]
  19. Y. Kozawa and S. Sato, "Sharper focal spot formed by higher-order radially polarized laser beams," J. Opt. Soc. Am. A 24, 1793-1798 (2007). [CrossRef]
  20. E. Y. S. Yew and C. J. R. Sheppard, "Tight focusing of radially polarized Gaussian and Bessel-Gauss beams," Opt. Lett. 32, 3417-3419 (2007). [CrossRef] [PubMed]
  21. V. P. Kalosha and I. Golub, "Toward the subdiffraction focusing limit of optical superresolution," Opt. Lett. 32, 3540-3542 (2007). [CrossRef] [PubMed]
  22. L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645 (1997). [CrossRef]
  23. W. Chen and Q. Zhan, "Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination," Opt. Express 15, 4106-4111 (2007). [CrossRef] [PubMed]
  24. P. Török, P. Varga, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field.I," J. Opt. Soc. Am. A 12, 2136-2144 (1995). [CrossRef]
  25. L. E. Helseth, "Roles of polarization,phase,and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001). [CrossRef]
  26. D. Biss and T. Brown, "Cylindrical vector beam focusing through a dielectric interface," Opt. Express 9, 490-497 (2001). [CrossRef] [PubMed]
  27. D. Biss and T. Brown, "Polarization vortex driven second harmonic generation," Opt. Lett. 28, 923-925 (2003). [CrossRef] [PubMed]
  28. D. P. Biss, K. S. Youngworth, and T. G. Brown, "Longitudinal field imaging," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing X, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4964, 73-87 (2003). [CrossRef]
  29. G. M. Lerman, A. Israel, and A. Lewis, "Applying Solid Immersion Near-field Optics to Raman Analysis of Strained Silicon Thin Films," Appl. Phys. Lett. 89, 223122 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited