OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 4 — Apr. 23, 2008

Polarization anisotropy in fiber-optic second harmonic generation microscopy

Ling Fu and Min Gu  »View Author Affiliations


Optics Express, Vol. 16, Issue 7, pp. 5000-5006 (2008)
http://dx.doi.org/10.1364/OE.16.005000


View Full Text Article

Enhanced HTML    Acrobat PDF (1032 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the investigation and implementation of a compact second harmonic generation microscope that uses a single-mode fiber coupler and a double-clad photonic crystal fiber. Second harmonic polarization anisotropy through the fiber-optic microscope systems is quantitatively measured with KTP microcrystals, fish scale and rat tail tendon. It is demonstrated that the polarized second harmonic signals can be excited and collected through the single-mode fiber coupler to analyze the molecular orientations of structural proteins. It has been discovered that a double-clad photonic crystal fiber can preserve the linear polarization in the core, although a depolarization effect is observed in the inner cladding region. The feasibility of polarization anisotropy measurements in fiber-optic second harmonic generation microscopy will benefit the in vivo study of collagen-related diseases with a compact imaging probe.

© 2008 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.2350) Imaging systems : Fiber optics imaging
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: March 11, 2008
Revised Manuscript: March 25, 2008
Manuscript Accepted: March 25, 2008
Published: March 27, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Ling Fu and Min Gu, "Polarization anisotropy in fiber-optic second harmonic generation microscopy," Opt. Express 16, 5000-5006 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-7-5000


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002). [CrossRef]
  2. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. USA 100, 7081-7086 (2003). [CrossRef] [PubMed]
  3. P. J. Campagnola and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003). [CrossRef] [PubMed]
  4. L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, "Coherent scattering in multi-harmonic light microscopy," Biophys. J. 80, 1568-1574 (2001). [CrossRef] [PubMed]
  5. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, "Polarization-modulated second harmonic generation in collagen," Biophys. J. 82, 3330-3342 (2002). [CrossRef] [PubMed]
  6. T. Yasui, Y. Tohno, and T. Araki, "Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light," Appl. Opt. 43, 2861-2867 (2004). [CrossRef] [PubMed]
  7. S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, "Studies of x(2)/x(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy," Biophys. J. 86, 3914-3922 (2004). [CrossRef] [PubMed]
  8. A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. USA 99, 11014-11019 (2002). [CrossRef] [PubMed]
  9. W. E. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA 100, 7075-7080 (2003). [CrossRef] [PubMed]
  10. S. Yazdanfar, L. H. Laiho, and P. T. C. So, "Interferometric second harmonic generation microscopy," Opt. Express 12, 2739-2745 (2004). [CrossRef] [PubMed]
  11. B. E. Applegate, C. Yang, A. M. Rollins, and J. A. Izatt, "Polarization-resolved second-harmonic-generation optical coherence tomography in collagen," Opt. Lett. 29, 2252-2254 (2004). [CrossRef] [PubMed]
  12. J. Su, I. V. Tomov, Y. Jiang, and Z. Chen, "High-resolution frequency-domain second-harmonic optical coherence tomography," Appl. Opt. 46, 1770-1775 (2007). [CrossRef] [PubMed]
  13. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals," Neuron. 31, 903-912 (2001). [CrossRef] [PubMed]
  14. B. A. Flusberg and E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Methods 2, 941-950 (2005). [CrossRef] [PubMed]
  15. L. Fu and M. Gu, "Fibre-optic nonlinear optical microscopy and endoscopy," J. Microsc. 226, 195-206 (2007). [CrossRef] [PubMed]
  16. D. Bird and M. Gu, "Two-photon fluorescence endoscopy with a micro-optic scanning head," Opt. Lett. 28, 1552-1554 (2003). [CrossRef] [PubMed]
  17. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005). [CrossRef] [PubMed]
  18. W. GÖbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29, 2521-2523 (2004). [CrossRef] [PubMed]
  19. L. Fu, X. Gan, and M. Gu, "Use of a single-mode fiber coupler for second-harmonic-generation microscopy," Opt. Lett. 30, 385-387 (2005). [CrossRef] [PubMed]
  20. L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2005). [CrossRef] [PubMed]
  21. L. Fu, X. Gan, D. Bird, and M. Gu, "Polarisation characteristics of a 1×2 fiber coupler under femtosecond pulsed and continuous wave illumination," Opt. Laser Technol. 37, 494-497 (2005). [CrossRef]
  22. Z. Zhu and T. G. Brown, "Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers," J. Opt. Soc. Am. B 21, 249-257 (2004). [CrossRef]
  23. T. Ritari et al., "Experimental study of polarization properties of highly birefringent photonic crystal fibers," Opt. Express 12, 5931-5939 (2004). [CrossRef] [PubMed]
  24. Z. Zhu and T. G. Brown, "Experimental studies of polarization properties of supercontinuum generated in a birefringent photonic crystal fiber," Opt. Express 12, 791-796 (2004). [CrossRef] [PubMed]
  25. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006). [CrossRef] [PubMed]
  26. L. Fu, A. Jian, C. Cranfield, H. Xie, and M. Gu, "Three-dimensional nonlinear optical endoscopy," J. Biomed. Opt. 12, 040501 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited