OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

Terahertz Spectroscopic Differentiation of Microstructures in Protein Gels

Gretel M. Png, Robert J. Falconer, Bernd M. Fischer, Hidayatul A. Zakaria, Samuel P. Mickan, Anton P.J. Middelberg, and Derek Abbott  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 13102-13115 (2009)
http://dx.doi.org/10.1364/OE.17.013102


View Full Text Article

Enhanced HTML    Acrobat PDF (1118 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that terahertz (THz) spectroscopy can be used to differentiate soft protein microstructures. Differentiation of soft microstructures in gels has to date been performed using optical imaging techniques (e.g. electron microscope) and Fourier Transform Infra-Red (FTIR) spectroscopy for the mid-IR range, but a differentiation tool for the THz frequency range is lacking. Particulate and fine-stranded (fibrillar) soft protein microstructures are of interest, particularly to medical researchers, because they form from naturally occurring proteins that are thought to be involved in several human diseases, such as Alzheimer’s disease. In this study, globular β-lactoglobulin structures with diameters of 2 µm, and fibrillar structures with diameters less than 0.03 µm are observed between 0.8 and 1.5 THz. Results show that the globular structures have a decline in THz transmission when compared to the fibrillar ones. The cause of this decline is possibly due to Rayleigh scattering from the globular microstructures.

© 2009 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: May 18, 2009
Revised Manuscript: July 1, 2009
Manuscript Accepted: July 1, 2009
Published: July 16, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Gretel M. Png, Robert J. Falconer, Bernd M. Fischer, Hidayatul A. Zakaria, Samuel P. Mickan, Anton P. J. Middelberg, and Derek Abbott, "Terahertz Spectroscopic Differentiation of Microstructures in Protein Gels," Opt. Express 17, 13102-13115 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-15-13102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. G. Markelz, A. Roitberg, and E. J. Heilweil, "Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz," Chem. Phys. Lett. 320, 42-48 (2000). [CrossRef]
  2. B. M. Fischer, M. Walther, and P. U. Jepsen, "Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy," Phys. Med. Biol. 47, 3807-3814 (2002). [CrossRef] [PubMed]
  3. S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, "Protein flexibility and conformational state: A comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin," Biophys. J. 85, 1269-1277 (2003). [CrossRef]
  4. K. Siegrist, C. R. Bucher, I. Mandelbaum, A. R. H. Walker, R. Balu, S. K. Gregurick, and D. F. Plusquellic, "High-resolution terahertz spectroscopy of crystalline trialanine: Extreme sensitivity to b -sheet structure and cocrystallized water," J. Am. Chem. Soc. 128, 5764-5775 (2006). [CrossRef] [PubMed]
  5. A. G. Markelz, J. R. Knab, J. Y. Chen, and Y. He, "Protein dynamical transition in terahertz dielectric response," Chem. Phys. Lett. 442, 413-417 (2007). [CrossRef]
  6. C. Zhang, E. Tarhan, A. K. Ramdas, A. M. Weiner, and S. M. Durbin, "Broadened far-infrared absorption spectra for hydrated and dehydrated myoglobin," J. Phys. Chem. B 108, 10,077-10,082 (2004). [CrossRef]
  7. J. Knab, B. Shah, J.-Y. Chen, and A. Markelz, "Critical hydration and temperature effects on terahertz biomolecular sensing," Proc. SPIE 5995, 59950P (2005). [CrossRef]
  8. J. Knab, J.-Y. Chen, and A. Markelz, "Hydration dependence of conformational dielectric relaxation of lysozyme," Biophys. J. 90, 2576-2581 (2006). [CrossRef] [PubMed]
  9. C. Kistner, A. Andre, T. Fischer, A. Thoma, C. Janke, A. Bartels, T. Gisler, G. Maret, and T. Dekorsy, "Hydration dynamics of oriented DNA films investigated by time-domain terahertz spectroscopy," Appl. Phys. Lett. 90, 233902 (2007). [CrossRef]
  10. A. G. Markelz, "Terahertz dielectric sensitivity to biomolecular structure and function," IEEE J. Sel. Top. Quantum Electron. 14, 180-190 (2008). [CrossRef]
  11. S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, M. Gruebele, D. M. Leitner, and M. Havenith, "Protein sequenceand pH-dependent hydration probed by terahertz spectroscopy," J. Am. Chem. Soc. 130, 2374-2375 (2008). [CrossRef] [PubMed]
  12. K. G. de Kruif, M. A. M. Hoffmann, M. E. van Marle, P. J. J. M. van Mil, S. P. F. M. Roefs, M. Verheul, and N. Zoon, "Gelation of proteins from milk," Faraday Discuss. 101, 185-200 (1995). [CrossRef] [PubMed]
  13. R. Mercad’e-Prieto and X. D. Chen, "Dissolution of whey protein concentrate gels in alkali," Am. Inst. Chem. Eng. (AIChE)J. 52, 792-803 (2006).
  14. D. J. Selkoe, "Folding proteins in fatal ways," Nature 426, 900-904 (2003). [CrossRef] [PubMed]
  15. J. Naslund, V. Haroutunian, R. Mohs, K. L. Davis, P. Davies, P. Greengard, and J. D. Buxbaum, "Correlation between elevated levels of amyloid b -peptide in the brain and cognitive decline," J. Am. Med. Assoc. 283, 1571-1577 (2000). [CrossRef] [PubMed]
  16. S. Y. Tan and M. B. Pepys, "Amyloidosis," Histopathology 25, 403-414 (1994). [CrossRef] [PubMed]
  17. W. S. Gosal, A. H. Clark, and S. B. Ross-Murphy, "Fibrillar b -Lactoglobulin gels: Part 1. Fibril formation and structure," Biomacromolecules 5, 2408-2419 (2004). [CrossRef] [PubMed]
  18. J. J. Resch, C. R. Daubert, and E. A. Foegeding, "b -Lactoglobulin gelation and modification: Effect of selected acidulants and heating conditions," J. Food Sci. 70, C79-C86 (2005). [CrossRef]
  19. E. A. Foegeding, P. R. Kuhn, and C. C. Hardin, "Specific divalent cation-induced changes during gelation of b -lactoglobulin," J. Agric. Food Chem. 40, 2092-2097 (1992). [CrossRef] [PubMed]
  20. H. M. Hudson, C. R. Daubert, and E. A. Foegeding, "Rheological and physical properties of derivitized whey protein isolate powders," J. Agric. Food Chem. 48, 3112-3119 (2000). [CrossRef]
  21. M. Verheul, J. S. Pedersen, S. P. F. M. Roefs, and K. G. de Kruif, "Association behavior of nativeb -lactoglobulin," Biopolymers 49, 11-20 (1999). [CrossRef] [PubMed]
  22. M. E. Hines and E. A. Foegeding, "Interactions ofa-lactalbumin and bovine serum-albumin with b -lactoglobulin in thermally induced gelation," J. Agric. Food Chem. 41, 341-346 (1993). [CrossRef] [PubMed]
  23. B. Y. Qin, M. C. Bewley, L. K. Creamer, H. M. Baker, E. N. Baker, and G. B. Jameson, "Structural basis of the Tanford transition of bovine b -lactoglobulin," Biochemistry 37, 14,014-14,023 (1998). [CrossRef]
  24. T. Lef`evre and M. Subirade, "Molecular differences in the formation and structure of fine-stranded and particulate b -lactoglobulin gels," Biopolymers 54, 578-586 (2000). [CrossRef]
  25. E. H. C. Bromley, M. R. H. Krebs, and A. M. Donald, "Aggregation across the length-scales in b -lactoglobulin," Faraday Discuss. 128, 13-27 (2005). [CrossRef] [PubMed]
  26. M. R. H. Krebs, G. L. Devlin, and A. M. Donald, "Protein particulates: Another generic form of protein aggregation?" Biophys. J. 92, 1336-1342 (2007). [CrossRef]
  27. G. M. Kavanagh, A. H. Clark, and S. B. Ross-Murphy, "Heat-induced gelation of globular proteins: Part 3. Molecular studies on low pH b -lactoglobulin gels," Int. J. Biol. Macromol. 28, 41-50 (2000). [CrossRef] [PubMed]
  28. S. I. Takata, T. Norisuye, N. Tanaka, and M. Shibayama, "Heat-induced gelation of b -lactoglobulin. 1. Timeresolved dynamic light scattering," Macromolecules 33, 5470-5475 (2000). [CrossRef]
  29. J. I. Boye, C. Y. Ma, A. Ismail, V. R. Harwalkar, and M. Kalab, "Molecular and microstructural studies of thermal denaturation and gelation of b -lactoglobulins A and B," J. Agric. Food Chem. 45, 1608-1618 (1997). [CrossRef]
  30. E. H. C. Bromley, M. R. H. Krebs, and A. M. Donald, "Mechanisms of structure formation in particulate gels of b -lactoglobulin formed near the isoelectric point," Eur. Phys. J. E 21, 145-152 (2006). [CrossRef]
  31. C. Le Bon, T. Nicolai, and D. Durand, "Kinetics of aggregation and gelation of globular proteins after heatinduced denaturation," Macromolecules 32, 6120-6127 (1999). [CrossRef]
  32. C. M. Bryant and D. J. McClements, "Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey," Trends Food Sci. Technol. 9, 143-151 (1998). [CrossRef]
  33. W. S. Gosal, A. H. Clark, and S. B. Ross-Murphy, "Fibrillar b -Lactoglobulin gels: Part 2. Dynamic mechanical characterization of heat-set systems," Biomacromolecules 5, 2420-2429 (2004). [CrossRef] [PubMed]
  34. W. S. Gosal, A. H. Clark, and S. B. Ross-Murphy, "Fibrillar b -lactoglobulin gels: Part 3. Dynamic mechanical characterization of solvent-induced systems," Biomacromolecules 5, 2430-2438 (2004). [CrossRef] [PubMed]
  35. P. C. Ashworth, J. A. Zeitler, M. Pepper, and V. P. Wallace, "Terahertz spectroscopy of biologically relevant liquids at low temperatures," in Proceedings of Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics (IRMMW-THz) (IEEE, Shanghai, China, 2006), p. 184.
  36. M. A. de la Fuente, H. Singh, and Y. Hemar, "Recent advances in the characterisation of heat-induced aggregates and intermediates of whey proteins," Trends Food Sci. Technol. 13, 262-274 (2002). [CrossRef]
  37. L. N. Arnaudov and R. de Vries, "Thermally induced fibrillar aggregation of hen egg white lysozyme," Biophys. J. 88, 515-526 (2005). [CrossRef]
  38. P. H. Siegel, "Terahertz technology," IEEE Transactions on Microwave Theory and Techniques 50, 910-928 (2002). [CrossRef]
  39. A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, "Catalogue of human tissue optical properties at terahertz frequencies," J. Biol. Phys. 129, 123-128 (2003). [CrossRef]
  40. G. M. Png, J.-W. Choi, B. W.-H. Ng, S. P. Mickan, D. Abbott, and X.-C. Zhang, "The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements," Phys. Med. Biol. 53, 3501-3517 (2008). [CrossRef] [PubMed]
  41. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles,Wiley science paperback series (John Wiley & Sons, New York, NY, USA, 1983).
  42. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., New York, USA, 1957).
  43. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, The SciTech radar and defense series, 2nd ed. (SciTech Publishing Inc., Rayleigh, NC, USA, 2004).
  44. H. T. Meryman, "Mechanics of freezing in living cells and tissues," Science 124, 515-521 (1956). [CrossRef] [PubMed]
  45. M. Bucciantini, E. Giannoni, F. Chiti, F. Baroni, L. Formigli, J. Zurdo, N. Taddei, G. Ramponi, C. M. Dobson, and M. Stefani, "Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases," Nature 416, 507-511 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited