OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

A 75 MHz Light Source for Femtosecond Stimulated Raman Microscopy

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18612-18620 (2009)
http://dx.doi.org/10.1364/OE.17.018612


View Full Text Article

Enhanced HTML    Acrobat PDF (431 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In femtosecond stimulated Raman microscopy (FSRM) a spectrally broad pulse (Raman probe) and a spectrally narrow pulse (Raman pump) interact in a sample and thereby generate a Raman spectrum of the focal volume. Here a novel light source for FSRM is presented. It consists of an 8-fs laser (repetition rate of 75 MHz) operating as Raman probe. A Yb3+ based fiber amplifier generates the Raman pump light at 980 nm. The amplifier is seeded by the spectral wing of the 8-fs laser output which ensures synchronisation of pump and probe pulses. Spectral and temporal characteristics of these pulses are reported and simultaneous recording of broadband Raman spectra relying on these pulses is demonstrated.

© 2009 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(320.7090) Ultrafast optics : Ultrafast lasers
(180.4315) Microscopy : Nonlinear microscopy
(180.5655) Microscopy : Raman microscopy

ToC Category:
Microscopy

History
Original Manuscript: September 3, 2009
Revised Manuscript: September 28, 2009
Manuscript Accepted: September 28, 2009
Published: September 30, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, "A 75 MHz Light Source for Femtosecond Stimulated Raman Microscopy," Opt. Express 17, 18612-18620 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-21-18612


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Turrell and J. Corset, eds., Raman microscopy developments and applications (Academic Press, San Diego, 1996).
  2. M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthäus, "A decade of vibrational microspectroscopy of human cells and tissue (1994-2004)," Analyst 129(10), 880-885 (2004). [CrossRef]
  3. I. Notingher and L. L. Hench, "Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro," Expert Rev. Med. Devices 3(2), 215-234 (2006). [CrossRef]
  4. B. de Jong, T. Bakker, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, and G. Puppels, "Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy," Anal. Chem. 78(22), 7761-7769 (2006). [CrossRef]
  5. C. Lieber, S. Majumder, D. Billheimer, D. Ellis, and A. Mahadevan-Jansen, "Raman microspectroscopy for skin cancer detection in vitro," J. Biomed. Opt. 13(2), 024013 (2008). [CrossRef]
  6. M. Ibelings, K. Maquelin, H. Endtz, H. Bruining, and G. Puppels, "Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy," Clin. Microbiol. Infect. 11(5), 353-358 (2005). [CrossRef]
  7. D. Willemse-Erix, M. Scholtes-Timmerman, J. Jachtenberg, W. van Leeuwen, D. Horst-Kreft, T. Schut, R. Deurenberg, G. Puppels, A. van Belkum, M. Vos, and K. Maquelin, "Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method," J. Clin. Microbiol. 47(3), 652-659 (2009). [CrossRef]
  8. J. Dong and Y. Ozaki, "FTIR and FT-Raman studies of partially miscible poly(methyl methacrylate)/poly(4-vinylphenol) blends in solid states," Macromolecules 30(2), 286-292 (1997). [CrossRef]
  9. B. von Vacano, L. Meyer, and M. Motzkus, "Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38(7), 916-926 (2007). [CrossRef]
  10. J. Koenig and J. Bobiak, "Raman and infrared imaging of dynamic polymer systems," Macromol. Mater. Eng. 292(7), 801-816 (2007). [CrossRef]
  11. A. Zumbusch, G. Holtom, and X. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82(20), 4142-4145 (1999). [CrossRef]
  12. J. Cheng and X. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108(3), 827-840 (2004). [CrossRef]
  13. A. Volkmer, "Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy," J. Phys. D-applied Phys. 38(5), R59-R81 (2005). [CrossRef]
  14. M. Müller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. PhysChem. 8(15), 2157-2170 (2007).
  15. C. Evans and X. Xie, "Coherent anti-Stokes Raman scattering microscopy: Chemical Imaging for Biology and Medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008). [CrossRef]
  16. A. Penzkofer, A. Laubereau, and W. Kaiser, "High-intensity Raman interactions," Prog. Quantum Electron. 6(2), 56-140 (1979).
  17. J. Cheng, A. Volkmer, L. Book, and X. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105(7), 1277-1280 (2001). [CrossRef]
  18. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, "Femtosecond stimulated Raman microscopy," Appl. Phys. B - Lasers Opt. 87(3), 389-393 (2007). [CrossRef]
  19. M. Yoshizawa and M. Kurosawa, "Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering," Phys. Rev. A 61, 013808 (2000). [CrossRef]
  20. P. Kukura, D. W. McCamant, and R. A. Mathies, "Femtosecond stimulated Raman spectroscopy," Annu. Rev. Phys. Chem. 58, 461-488 (2007). [CrossRef]
  21. D. McCamant, P. Kukura, and R. Mathies, "Femtosecond broadband stimulated Raman: A new approach for high-performance vibrational spectroscopy," Appl. Spectrosc. 57(11), 1317-1323 (2003). [CrossRef]
  22. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81(8), 1015-1047 (2005). [CrossRef]
  23. C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. Xie, "Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy," Science 322(5909), 1857-1861 (2008). [CrossRef]
  24. P. Nandakumar, A. Kovalev, and A. Volkmer, "Vibrational imaging based on stimulated Raman scattering microscopy," New J. Phys. 11(3), 033026 (2009). [CrossRef]
  25. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, "Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy," Opt. Express 17(5), 3651-3658 (2009). [CrossRef]
  26. K. Kieu, B. Saar, G. Holtom, X. Xie, and F. Wise, "High-power picosecond fiber source for coherent Raman microscopy," Opt. Lett. 34(13), 2051-2053 (2009). [CrossRef]
  27. Q. Hao, W. Li, and H. Zeng, "High-power Yb-doped fiber amplification system synchronized with a few-cycle Ti:sapphire laser," Opt. Express 17(7), 5815-5821 (2009). [CrossRef]
  28. R. Paschotta, J. Nilsson, A.C. Tropper and D.C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33(7), 1049-1056 (1997). [CrossRef]
  29. H. Pask, R. Carman, D. Hanna, A. Tropper, C. Mackechnie, P. Barber, and J. Dawes, "Ytterbium-doped silica fiber lasers-versatile sources for the 1-1.2 μm region," IEEE J. Sel. Top. Quantum Electron. 1(1), 2-13 (1995).
  30. R. Selvas, J. K. Sahu, L. B. Fu, J. N. Jang, J. Nilsson, A. B. Grudinin, K. H. Yla-Jarkko, S. A. Alam, P.W. Turner, and J. Moore, "High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm," Opt. Lett. 28(13), 1093-1095 (2003). [CrossRef]
  31. L. B. Fu, M. Ibsen, D. J. Richardson, and D. N. Payne, "977-nm all-fiber DFB laser," IEEE Photon. Technol. Lett. 16(11), 2442-2444 (2004). [CrossRef]
  32. S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated Raman spectrograph for the near ultraviolet," Appl. Phys. B-Lasers Opt. 85(4), 557-564 (2006). [CrossRef]
  33. I. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, "Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses," Rev. Sci. Instrum. 75(7), 2323-2327 (2004). [CrossRef]
  34. A. Savitzky and M. Golay, "Smoothing + differentiation of data by simplified least squares procedures," Anal. Chem. 36(8), 1627 (1964). [CrossRef]
  35. S. Lee, D. Zhang, D. McCamant, P. Kukura, and R. Mathies, "Theory of femtosecond stimulated Raman spectroscopy," J. Chem. Phys. 121(8), 3632-3642 (2004). [CrossRef]
  36. S. Yoon, D. McCamant, P. Kukura, R. Mathies, D. Zhang, and S. Lee, "Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay," J. Chem. Phys. 122(2), 024505 (2005). [CrossRef]
  37. E. Ploetz, B. Marx, and P. Gilch, "Disturbing interference pattern in femtosecond stimulated Raman microscopy," J. Raman Spectros.in press (2009). [CrossRef]
  38. B. Schrader, ed., Infrared and Raman Spectroscopy (VCH, Weinheim, New York, Basel, Cambridge, Tokyo, 1995). [CrossRef]
  39. B. Schrader and W. Meier, eds., Raman/IR Atlas of Organic Compounds (Verlag Chemie, Weinheim, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited