OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

Long period grating working in transition mode as promising technological platform for label-free biosensing

P. Pilla, P. Foglia Manzillo, V. Malachovska, A. Buosciolo, S. Campopiano, A. Cutolo, L. Ambrosio, M. Giordano, and A. Cusano  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 20039-20050 (2009)
http://dx.doi.org/10.1364/OE.17.020039


View Full Text Article

Enhanced HTML    Acrobat PDF (1193 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the development of a platform for label-free biosensing based on overlayered Long Period Gratings (LPGs) working in transition mode. Nano-scale layers of Polystyrene (PS) with different thicknesses were deposited onto the same LPG to test the performances of the device in different working points of its modified sensitivity characteristic. Adsorption dynamic of biotinylated bovine serum albumin (BBSA) onto the PS overlays was on-line monitored as well as a subsequent streptavidin (SA) binding dynamic on the biotinylated sites of the protein ad-layer. Experimental results show that overlayered LPGs are among the most sensitive refractive index transducers to be employed in label-free biochemical detection and that wide margins of further optimization exist.

© 2009 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.0310) Optics at surfaces : Thin films
(350.2770) Other areas of optics : Gratings
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 8, 2009
Revised Manuscript: July 10, 2009
Manuscript Accepted: July 11, 2009
Published: October 20, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
P. Pilla, P. Foglia Manzillo, V. Malachovska, A. Buosciolo, S. Campopiano, A. Cutolo, L. Ambrosio, M. Giordano, and A. Cusano, "Long period grating working in transition mode as promising technological platform for label-free biosensing," Opt. Express 17, 20039-20050 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-22-20039


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  2. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996). [CrossRef]
  3. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003). [CrossRef]
  4. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the Response of Long Period Fiber Gratings to External Index of Refraction,” J. Lightwave Technol. 16, 1606- (1998).
  5. R. Falciai, A. G. Mignani, and A. Vannini, “Long period gratings as solution concentration sensors,” Sens. Actuators B Chem. 74(1-3), 74–77 (2001). [CrossRef]
  6. R. Falate, R. C. Kamikawachi, M. Müller, H. J. Kalinowski, and J. L. Fabris, “Fiber optic sensors for hydrocarbon detection,” Sens. Actuators B Chem. 105(2), 430–436 (2005). [CrossRef]
  7. M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000). [CrossRef] [PubMed]
  8. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Dual-peak long-period fiber gratings with enhanced refractive index sensitivity by finely tailored mode dispersion that uses the light cladding etching technique,” Appl. Opt. 46(4), 451–455 (2007). [CrossRef] [PubMed]
  9. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006). [CrossRef] [PubMed]
  10. X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32(17), 2541–2543 (2007). [CrossRef] [PubMed]
  11. Z. Wang, J. R. Heflin, K. Van Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, “Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings,” Sens. Actuators B Chem. 139(2), 618–623 (2009). [CrossRef]
  12. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006). [CrossRef]
  13. H. Shibru, Y. Zhang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Optimization of layer-by-layer electrostatic self-assembly processing parameters for optical biosensing,” Opt. Eng. 45(2), 024401 (2006). [CrossRef]
  14. I. Del Villar, M. Achaerandio, I. R. Matías, and F. J. Arregui, “Deposition of overlays by electrostatic self-assembly in long-period fiber gratings,” Opt. Lett. 30(7), 720–722 (2005). [CrossRef] [PubMed]
  15. I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005). [CrossRef] [PubMed]
  16. I. Del Villar, I. R. Matias, F. J. Arregui, and M. Achaerandio, “Nanodeposition of materials with complex refractive index in long-period fiber gratings,” J. Lightwave Technol. 23, 4192- (2005).
  17. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006). [CrossRef] [PubMed]
  18. A. Cusano, A. Iadicicco, P. Pilla, A. Cutolo, M. Giordano, and S. Campopiano, “Sensitivity characteristics in nanosized coated long period gratings,” Appl. Phys. Lett. 89(20), 201116 (2006). [CrossRef]
  19. A. Cusano, P. Pilla, M. Giordano, and A. Cutolo, “Modal Transition in Nano-Coated Long Period Fiber Gratings: Principle and Applications to Chemical Sensing,” in Advanced Photonic Structure for Biological and Chemical Detection, X. Fan, Ed. (Springer, 2009).
  20. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002). [CrossRef]
  21. R. J. Green, J. Davies, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, “Surface plasmon resonance for real time in situ analysis of protein adsorption to polymer surfaces,” Biomaterials 18(5), 405–413 (1997). [CrossRef] [PubMed]
  22. D. S. Hage, “Immunoassays,” Anal. Chem. 65(12), 420R–424R (1993). [CrossRef]
  23. G. Sagvolden, I. Giaever, and J. Feder, “Characteristic protein adhesion forces on glass and polystyrene substrates by atomic force microscopy,” Langmuir 14(21), 5984–5987 (1998). [CrossRef]
  24. S. Allen, J. Davies, A. C. Dawkes, M. C. Davies, J. C. Edwards, M. C. Parker, C. J. Roberts, J. Sefton, S. J. B. Tendler, and P. M. Williams, “In situ observation of streptavidin-biotin binding on an immunoassay well surface using an atomic force microscope,” FEBS Lett. 390(2), 161–164 (1996). [CrossRef] [PubMed]
  25. L. E. Scriven, “Physics And Applications of Dip Coating And Spin Coating,” Mater. Res. Soc. Symp. Proc. 121, 717–729 (1988). [CrossRef]
  26. P. Pilla, P. Foglia Manzillo, M. Giordano, M. L. Korwin-Pawlowski, W. J. Bock, and A. Cusano, “Spectral behavior of thin film coated cascaded tapered long period gratings in multiple configurations,” Opt. Express 16(13), 9765–9780 (2008). [CrossRef] [PubMed]
  27. S. A. Vasiliev, E. M. Dianov, D. Varelas, H. G. Limberger, and R. P. Salathé, “Postfabrication resonance peak positioning of long-period cladding-mode-coupled gratings,” Opt. Lett. 21(22), 1830–1832 (1996). [CrossRef] [PubMed]
  28. J. Turkova, “Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function,” J. Chromatogr. Biomed. Sci. Applic. 722(1-2), 11–31 (1999). [CrossRef]
  29. A. Ahluwalia, D. De Rossi, C. Ristori, A. Schirone, and G. Serra, “A comparative study of protein immobilisation techniques for optical immunosensors,” Biosens. Bioelectron. 7(3), 207–214 (1991). [CrossRef]
  30. J. D. Peterson, S. D. Miller, and C. Waltenbaugh, “Rapid biotin-avidin method for quantitation of antiviral antibody isotypes,” J. Virol. Methods 27(2), 189–201 (1990). [CrossRef] [PubMed]
  31. E. A. Bayer and M. Wilchek, “The Avidin-Biotin Complex in Bioanalytical Applications,” Anal. Chem. 171, 1–32 (1988).
  32. B. Bhushan, D. R. Tokachichu, M. T. Keener, and S. C. Lee, “Morphology and adhesion of biomolecules on silicon based surfaces,” Acta Biomater. 1(3), 327–341 (2005). [CrossRef]
  33. K. Reimhult, K. Petersson, and A. Krozer, “QCM-D analysis of the performance of blocking agents on gold and polystyrene surfaces,” Langmuir 24(16), 8695–8700 (2008). [CrossRef] [PubMed]
  34. A. Tsargorodskaya, A. V. Nabok, and A. K. Ray, “Ellipsometric study of the adsorption of bovine serum albumin into porous silicon,” Nanotechnology 15(5), 703–709 (2004). [CrossRef]
  35. D. Piscevic, W. Knoll, and M. J. Tarlov, “Surface plasmon microscopy of biotin-streptavidin binding reactions on UV-photopatterned alkanethiol self-assembled monolayers,” Supramol. Science 2(2), 99–106 (1995). [CrossRef]
  36. W. A. Hendrickson, A. Pähler, J. L. Smith, Y. Satow, E. A. Merritt, and R. P. Phizackerley, “Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation,” Proc. Natl. Acad. Sci. U.S.A. 86(7), 2190–2194 (1989). [CrossRef] [PubMed]
  37. J. E. Puskas, Y. Dahman, A. Margaritis, and M. Cunningham, “Novel thymine-functionalized polystyrenes for applications in biotechnology. 2. Adsorption of model proteins,” Biomacromolecules 5(4), 1412–1421 (2004). [CrossRef] [PubMed]
  38. P. Esser, Principles in adsorption to polystyrene. second ed., Bulletin No. 6 (1), Nunc A/S, Roskilde, Denmark, 1997.
  39. S. Lee and E. Ruckenstein, “Adsorption of proteins onto polymeric surfaces of different hydrophilicities-a case study with bovine serum albumin,” J. Colloid Interface Sci. 125(2), 365–379 (1988). [CrossRef]
  40. G. H. Seong, Y. Yanagida, M. Aizawa, and E. Kobatake, “Atomic force microscopy identification of transcription factor NFkappaB bound to streptavidin-pin-holding DNA probe,” Anal. Biochem. 309(2), 241–247 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited