OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

High throughput transmission optical projection tomography using low cost graphics processing unit

Claudio Vinegoni, Lyuba Fexon, Paolo Fumene Feruglio, Misha Pivovarov, Jose-Luiz Figueiredo, Matthias Nahrendorf, Antonio Pozzo, Andrea Sbarbati, and Ralph Weissleder  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22320-22332 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (9098 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We implement the use of a graphics processing unit (GPU) in order to achieve real time data processing for high-throughput transmission optical projection tomography imaging. By implementing the GPU we have obtained a 300 fold performance enhancement in comparison to a CPU workstation implementation. This enables to obtain on-the-fly reconstructions enabling for high throughput imaging.

© 2009 OSA

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 25, 2009
Revised Manuscript: October 21, 2009
Manuscript Accepted: October 25, 2009
Published: November 23, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Claudio Vinegoni, Lyuba Fexon, Paolo Fumene Feruglio, Misha Pivovarov, Jose-Luiz Figueiredo, Matthias Nahrendorf, Antonio Pozzo, Andrea Sbarbati, and Ralph Weissleder, "High throughput transmission optical projection tomography using low cost graphics processing unit," Opt. Express 17, 22320-22332 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  2. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009). [CrossRef]
  3. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2007). [CrossRef] [PubMed]
  4. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002). [CrossRef] [PubMed]
  5. H. S. Sakhalkar and M. Oldham, “Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation,” Med. Phys. 35(1), 101–111 (2008). [CrossRef] [PubMed]
  6. J. Radon, “On the determination of function from their integrals along certain manifolds,” Ber. Saechs. Akad. Wiss, Leipzig Math. Phys. Kl. 69, 262–277 (1917).
  7. R. M. Mersereau and A. V. Oppenheim, “Digital reconstruction of multidimensional signals from their projections,” Proc. IEEE 62(10), 1319–1338 (1974). [CrossRef]
  8. R. M. Mersereau, “Direct Fourier transform techniques in 3-D image reconstruction,” Comput. Biol. Med. 6(4), 247–258 (1976). [CrossRef] [PubMed]
  9. H. Stark, J. W. Woods, I. Paul, and R. Hingorani, “An investigation of computerized tomography by direct Fourier inversion and optimum interpolation,” IEEE Trans. Biomed. Eng. 28(7), 496–505 (1981). [CrossRef] [PubMed]
  10. R. M. Lewitt, “Reconstruction algorithms: Transform methods,” Proc. IEEE 71(3), 390–408 (1983). [CrossRef]
  11. J. D. O’Sullivan, “A fast sinc function gridding algorithm for fourier inversion in computer tomography,” IEEE Trans. Med. Imaging 4(4), 200–207 (1985). [CrossRef] [PubMed]
  12. S. Matej and I. Bajla, “A high-speed reconstruction from projections using direct Fourier method with optimized parameters-an experimental analysis,” IEEE Trans. Med. Imaging 9(4), 421–429 (1990). [CrossRef] [PubMed]
  13. H. Schomberg and J. Timmer, “The gridding method for image reconstruction by Fourier transformation,” IEEE Trans. Med. Imaging 14(3), 596–607 (1995). [CrossRef] [PubMed]
  14. A. Brandt, J. Mann, M. Brodski, and M. Galun, “A fast and accurate multilevel inversion of the radon transform,” SIAM J. Appl. Math. 60(2), 437–462 (2000). [CrossRef]
  15. S. Basu and Y. Bresler, “O(N(2)log(2)N) filtered backprojection reconstruction algorithm for tomography,” IEEE Trans. Image Process. 9(10), 1760–1773 (2000). [CrossRef] [PubMed]
  16. G. C. Sharp, N. Kandasamy, H. Singh, and M. Folkert, “GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration,” Phys. Med. Biol. 52(19), 5771–5783 (2007). [CrossRef] [PubMed]
  17. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008). [CrossRef] [PubMed]
  18. K. Mueller, F. Xu, and N. Neophytou, “Why do GPUs work so well for acceleration of CT? SPIE Electronic Imaging '07,” Keynote, Computational Imaging V, San Jose, (2007).
  19. H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, “Fast GPU-Based CT Reconstruction using the Common Unified Device Architecture (CUDA),” Nuclear Science Symposium Conference Record 6, 4464–4466 (2007).
  20. P. B. Noël, A. Walczak, K. R. Hoffmann, J. Xu, J. J. Corso, and S. Schafer, “Clinical Evaluation of GPU-Based Cone Beam Computed Tomography,” Proc. of High-Performance Medical Image Computing and Computer-Aided Intervention (HP-MICCAI), (2008).
  21. J. B. T. M. Roerdink and M. A. Westenbrg, “Data-parallel tomographyc reconstruction: a comparison of filtered backprojection and direct fourier reconstruction,” Parallel Comput. 24(14), 2129–2142 (1998). [CrossRef]
  22. NVIDIA Corporation. CUDA Programming Guide (manual), February (2007).
  23. J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with CUDA,” Queueing Syst. 6, 40–53 (2008).
  24. J. Nickolls and I. Buck, “NVIDIA CUDA software and GPU parallel computing architecture,” Microprocessor Forum, May (2007).
  25. S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Z.Ueng, J. A. Stratton, and W. W. Hwu “Program Optimization Space Pruning for a Multithreaded GPU,” Proc. of the sixth annual IEEE/ACM int. symp. on Code gen. and opt, (2008).
  26. C. Vinegoni, D. Razansky, L. Fexon, J. L. Figueiredo, M. Pivovarov, M. Nahrendorf, V. Ntziachristos, and R. Weissleder, “Born normalization for fluorescence optical projection tomography for whole heart imaging,” J Vis Exp. 28, 1389 (2009).
  27. C. Vinegoni, D. Razansky, J. L. Figueiredo, M. Nahrendorf, V. Ntziachristos, and R. Weissleder, “Normalized Born ratio for fluorescence optical projection tomography,” Opt. Lett. 34(3), 319–321 (2009). [CrossRef] [PubMed]
  28. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol. 52(10), 2775–2790 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (6120 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited