OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

In vivo real-time recording of UV-induced changes in the autofluorescence of a melanin-containing fungus using a micro-spectrofluorimeter and a low-cost webcam

V. Raimondi, G. Agati, G. Cecchi, I. Gomoiu, D. Lognoli, and L. Palombi  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22735-22746 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (896 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical epifluorescence microscope, coupled to a CCD camera, a standard webcam and a microspectrofluorimeter, are used to record in vivo real-time changes in the autofluorescence of spores and hyphae in Aspergillus niger, a fungus containing melanin, while exposed to UV irradiation. The results point out major changes in both signal intensity and the spectral shape of the autofluorescence signal after only few minutes of exposure, and can contribute to the interpretation of data obtained with other fluorescence techniques, including those, such as GPF labeling, in which endogenous fluorophores constitute a major disturbance.

© 2009 OSA

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(180.2520) Microscopy : Fluorescence microscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 30, 2009
Revised Manuscript: September 21, 2009
Manuscript Accepted: November 6, 2009
Published: November 30, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

V. Raimondi, G. Agati, G. Cecchi, I. Gomoiu, D. Lognoli, and L. Palombi, "In vivo real-time recording of UV-induced changes in the autofluorescence of a melanin-containing fungus using a micro-spectrofluorimeter and a low-cost webcam," Opt. Express 17, 22735-22746 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Palumbo, and R. Pratesi, Laser and current optical techniques in biology (ESP RSC Publishing, Cambridge, 2004).
  2. N. Billinton and A. W. Knight, “Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem. 291(2), 175–197 (2001). [CrossRef] [PubMed]
  3. J. K. Li, E. C. Asali, A. E. Humphrey, and J. J. Horvath, “Monitoring cell concentration and activity by multiple excitation fluorometry,” Biotechnol. Prog. 7(1), 21–27 (1991). [CrossRef] [PubMed]
  4. S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998). [CrossRef] [PubMed]
  5. M. Ganzlin, S. Marose, X. Lu, B. Hitzmann, T. Scheper, and U. Rinas, “In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures,” J. Biotechnol. 132(4), 461–468 (2007). [CrossRef] [PubMed]
  6. A. R. Graham, “Fungal autofluorescence with ultraviolet illumination,” Am. J. Clin. Pathol. 79(2), 231–234 (1983). [PubMed]
  7. M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28(Pt 1), 25–32 (1998). [PubMed]
  8. P. Asawanonda and C. R. Taylor, “Wood's light in dermatology,” Review International Journal of Dermatology 38(11), 801–807 (1999). [CrossRef]
  9. D. M. Elston, “Fluorescence of fungi in superficial and deep fungal infections,” BMC Microbiol. 1(1), 21 (2001). [CrossRef] [PubMed]
  10. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004). [CrossRef]
  11. V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004). [CrossRef] [PubMed]
  12. K. Davitt, Y.-K. Song, W. R. Patterson, A. V. Nurmikko, M. Gherasimova, J. Han, Y.-L. Pan, and R. K. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express 13(23), 9548–9555 (2005). [CrossRef] [PubMed]
  13. H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: influence of fungal spore age and air exposure,” J. Aerosol Sci. 38(1), 83–96 (2007). [CrossRef]
  14. C. Arcangeli, L. Zucconi, S. Onofri, and S. Cannistraro, “Fluorescence study on whole Antarctic fungal spores under enhanced UV irradiation,” J. Photochem. Photobiol. B 39(3), 258–264 (1997). [CrossRef]
  15. C. Arcangeli, W. Yu, S. Cannistraro, and E. Gratton, “Two-photon autofluorescence microscopy and spectroscopy of Antarctic fungus: new approach for studying effects of UV-B irradiation,” Biopolymers 57(4), 218–225 (2000). [CrossRef] [PubMed]
  16. D. Rativa, J. P. Batista Barbalho, J. Ferreira Martins Filho, R. Evangelista de Araujo, A. Stevens, L. Gomes, L. Gonzaga de Castro Souza Filho, and A. Marsden, “Perspectives on in vitro fungal diagnosis with UV light,” Revista Brasileira de Engenharia Biomédica 23, 25–30 (2007).
  17. M. Bengtsson, S. Wallström, M. Sjöholm, R. Grönlund, B. Anderson, A. Larsson, S. Karlsson, S. Kröll, and S. Svanberg, “Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis,” Appl. Spectrosc. 59(8), 1037–1041 (2005). [CrossRef] [PubMed]
  18. M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005). [CrossRef]
  19. V. Raimondi, L. Palombi, G. Cecchi, D. Lognoli, M. Trambusti, and I. Gomoiu, “Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques,” Opt. Commun. 273(1), 219–225 (2007). [CrossRef]
  20. L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71(6), 737–742 (2000). [CrossRef] [PubMed]
  21. F. Sidney, Velick, “Spectra and structure in enzyme complexes of pyridine and flavine nucleotides,” in Light and Life, W. D. McElroy and B. Glass, eds. (Johns Hopkins Press, Baltimore, 1961).
  22. K. König, M. W. Berns, and B. J. Tromberg, “Time-resolved and steady-state fluorescence measurements of beta-nicotinamide adenine dinucleotide-alcohol dehydrogenase complex during UVA exposure,” J. Photochem. Photobiol. B 37(1-2), 91–95 (1997). [CrossRef] [PubMed]
  23. J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989). [CrossRef] [PubMed]
  24. F. Joubert, H. M. Fales, H. Wen, C. A. Combs, and R. S. Balaban, “NADH enzyme-dependent fluorescence recovery after photobleaching: applications to enzyme and mitochondrial reactions kinetics, in vitro,” Biophys. J. 86(1), 629–645 (2004). [CrossRef] [PubMed]
  25. L. M. Tiede, M. G. Nichols, and LeA, “Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy,” Photochem. Photobiol. 82(3), 656–664 (2006). [CrossRef] [PubMed]
  26. K. Konig, T. Krasieva, E. Bauer, U. Fiedler, M. W. Berns, B. J. Tromberg, and K. O. Greulich, “Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay,” J. Biochem. Opt. 1, 217–222 (1996).
  27. C. A. Combs and R. S. Balaban, “Direct imaging of dehydrogenase activity within living cells using enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP),” Biophys. J. 80(4), 2018–2028 (2001). [CrossRef] [PubMed]
  28. P. Kayatz, G. Thumann, T. T. Luther, J. F. Jordan, K. U. Bartz-Schmidt, P. J. Esser, and U. Schraermeyer, “Oxidation causes melanin fluorescence,” Invest. Ophthalmol. Vis. Sci. 42(1), 241–246 (2001). [PubMed]
  29. R. C. Benson, R. A. Meyer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence--is it due to flavins?” J. Histochem. Cytochem. 27(1), 44–48 (1979). [CrossRef] [PubMed]
  30. I. Gomoiu, E. Saratopoulou, Z. Kollia, A. C. Cefalas, J. van Loon, D. Mogaldea, D. Hasegan, and V. Valeanu, “Colored fungal spores as candidates for space experiments,” Orig. Life Evol. Biosph. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4040 KB)     
» Media 2: AVI (3040 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited