OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating

Barbora Špačková and Jiří Homola  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 23254-23264 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A rigorous theoretical analysis of a fiber optic surface plasmon resonance sensor is presented. The sensor is based on the spectroscopy of mixed surface plasmon – fiber cladding modes excited by the fundamental mode of an optical fiber via a Bragg grating formed in the fiber core. The transmission spectrum is calculated by means of the Coupled Mode Theory. The modal structure is theoretically analyzed using a 3-D method based on a field expansion approach for matching the field continuity at the boundary of the layers. The theoretical analysis revealed a series of narrow transmission dips associated with the coupling of the fundamental mode to the mixed surface plasmon – fiber cladding modes. The sensitivity of these dips to changes in the refractive index of the analyte is calculated. Moreover, the refractive index resolution of the sensor was estimated to be better than 2 × 10−6 RIU.

© 2009 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: October 27, 2009
Revised Manuscript: November 29, 2009
Manuscript Accepted: November 30, 2009
Published: December 3, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Barbora Špačková and Jiří Homola, "Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating," Opt. Express 17, 23254-23264 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008). [CrossRef] [PubMed]
  2. R. C. Jorgenson and S. S. Yee, “A fiber optic chemical sensor-based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993). [CrossRef]
  3. J. Homola, “Optical-fiber sensor-based on surface-plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995). [CrossRef]
  4. M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003). [CrossRef]
  5. R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sensors and Actuators B 74(1-3), 106–111 (2001). [CrossRef]
  6. W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A Phys. 84(3), 198–204 (2000). [CrossRef]
  7. J. Dostálek, J. Čtyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem. 76(1-3), 8–12 (2001). [CrossRef]
  8. Y. J. He, Y. L. Lo, and J. F. Huang, “Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing,” J. Opt. Soc. Am. B 23(5), 801–811 (2006). [CrossRef]
  9. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16(25), 20227–20240 (2008). [CrossRef] [PubMed]
  10. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett. 31(14), 2118–2120 (2006). [CrossRef] [PubMed]
  11. J. Čtyroký, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modelling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31(9/10), 927–941 (1999). [CrossRef]
  12. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007). [CrossRef] [PubMed]
  13. B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem. 139(1), 199–203 (2009). [CrossRef]
  14. A. Yariv, “Coupled-mode theory for Guided-Wave Optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973). [CrossRef]
  15. K. Iizuka, Elements of Photonics, Volume II: For Fiber and Integrated Optics (John Wiley & Sons, Inc., 2002).
  16. Wolfram Research, Inc., http://functions.wolfram.com .
  17. Wolfram Research, Inc., http://mathworld.wolfram.com .
  18. A. Othonos, and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).
  19. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H-2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29(13), 1191–1193 (1993). [CrossRef]
  20. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited