OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

Intra-retinal layer segmentation in optical coherence tomography images

Akshaya Mishra, Alexander Wong, Kostadinka Bizheva, and David A. Clausi  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23719-23728 (2009)
http://dx.doi.org/10.1364/OE.17.023719


View Full Text Article

Enhanced HTML    Acrobat PDF (2041 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Retinal layer thickness, evaluated as a function of spatial position from optical coherence tomography (OCT) images is an important diagnostics marker for many retinal diseases. However, due to factors such as speckle noise, low image contrast, irregularly shaped morphological features such as retinal detachments, macular holes, and drusen, accurate segmentation of individual retinal layers is difficult. To address this issue, a computer method for retinal layer segmentation from OCT images is presented. An efficient two-step kernel-based optimization scheme is employed to first identify the approximate locations of the individual layers, which are then refined to obtain accurate segmentation results for the individual layers. The performance of the algorithm was tested on a set of retinal images acquired in-vivo from healthy and diseased rodent models with a high speed, high resolution OCT system. Experimental results show that the proposed approach provides accurate segmentation for OCT images affected by speckle noise, even in sub-optimal conditions of low image contrast and presence of irregularly shaped structural features in the OCT images.

© 2009 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 18, 2009
Revised Manuscript: October 26, 2009
Manuscript Accepted: November 20, 2009
Published: December 11, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Akshaya Mishra, Alexander Wong, Kostadinka Bizheva, and David A. Clausi, "Intra-retinal layer segmentation in optical coherence tomography images," Opt. Express 17, 23719-23728 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-26-23719


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, "Optical coherence tomography," J. Biomed. Opt. 1, 157 (1996). [CrossRef]
  3. J. Fujimoto, W. Drexler, J. Schuman, and C. Hitzenberger, "Optical Coherence Tomography (OCT) in ophthalmology: introduction," Opt. Express 17(5), 3978-3979 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-5-3978. [CrossRef]
  4. C. Leung, C. Cheung, R. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. Pang, R. Tse, and D. Lam, "Evaluation of retinal nerve fiber layer progression in glaucoma with optical coherence tomography guided progression analysis (GPA)," Invest. Ophthamal. Visual Sci. (2009), http://www.iovs.org/cgi/rapidpdf/iovs.09-3468v1.pdf.
  5. S. Taliantzis, D. Papaconstantinou, C. Koutsandrea, M. Moschos, M. Apostolopoulos, and G. Georgopoulos, "Comparative studies of RNFL thickness measured by OCT with global index of visual fields in patients with ocular hypertension and early open angle glaucoma," Clin. Ophthalmol. 3, 373-379 (2009). [CrossRef] [PubMed]
  6. D. Fernández, H. Salinas and C. Puliafito, "Automated detection of retinal layer structures on optical coherence tomography images," Opt. Express 13(25), 10200-10216 (2005), http://www.opticsinfobase.org/ oe/abstract.cfm?uri=oe-13-25-10200. [CrossRef]
  7. J. Schmitt, S. Xiang, and K. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999). [CrossRef]
  8. H. Ishikawa, D. Stein, Ga.Wollstein, S. Beaton, J. Fujimoto, and J. Schuman, "Macular segmentation with optical coherence tomography," Invest. Ophthamal. Visual Sci. 46(6), 2012-2017 (2005). [CrossRef]
  9. C. Ahlers, C. Simader, W. Geitzenauer, G. Stock, P. Stetson, S. Dastmalchi and U. Schmidt-Erfurth, "Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography," Br. J. Ophthalmol. 92, 197-203 (2008). [CrossRef]
  10. T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, "Automated segmentation of the macula by optical coherence tomography," Opt. Express 17(18), 15659-15669 (2009), http://www.opticsinfobase. org/abstract.cfm?URI=oe-17-18-15659. [CrossRef]
  11. M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480- 9491 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-23-9480. [CrossRef] [PubMed]
  12. M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kaluzny, J. G. Fujimoto, and A. Kowalczyk, "Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies," J. Biomed. Opt. 12(4), 041207 (2007). [CrossRef]
  13. M. Haeker, M. Sonka, R. Kardon, V. A. Shah, X. Wu, and M. Abràmoff, "Automated segmentation of intraretinal layers from macular optical coherence tomography images," Proc. SPIE: Medical Imaging 6512, (2007).
  14. M. Niemeijer, M. Garvin, B. van Ginneken, M. Sonka, M. Abràmoff, "Vessel segmentation in 3D spectral OCT scans of the retina," Proc. SPIE 6914, 69141R (2008). [CrossRef]
  15. M. Garvin, M. Abràmoff, R. Kardon, S. Russell, X. Wu, and M. Sonka, "Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search," IEEE Trans. Med. Imaging 27(10), 1495-1505 (2008). [CrossRef]
  16. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. Hitzenberger, "Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography," Opt. Express 16(21), 16410-16422 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-21-16410. [CrossRef]
  17. M. Hee, D. Huang, E. Swanson, and J. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B-Opt. Phys. 9(6), 903-908 (1992), http://www. opticsinfobase.org/abstract.cfm?URI=josab-9-6-903. [CrossRef]
  18. M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: active contour models," Int. J. Comput. Vision 1(4), 321-331 (1988). [CrossRef]
  19. V. Caselles, R. Kimmel, and G. Sapiro, "Geodesic active contours," Int. J. Comput. Vision 22(1), 61-97 (1997). [CrossRef]
  20. A. Mishra, P. Fieguth, and D. Clausi, "Accurate boundary localization using dynamic programming on snake," Proc. Canadian Conference on Computer and Robot Vision, 261-268 (2008). [CrossRef]
  21. A. Mishra, P. Fieguth, and D. Clausi, "Robust snake convergence based on dynamic programming," Proc. IEEE International Conference on Image Processing, 1092-1095 (2008).
  22. P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629-639 (1990). [CrossRef]
  23. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd and K. Bizheva, "High-speed, high-resolution Fourierdomain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region," Opt. Lett. 33, 2479-2481 (2008). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited