OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

Spectroscopic measurements with dispersion encoded full range frequency domain optical coherence tomography in single- and multilayered non–scattering phantoms

B. Hermann, B. Hofer, C. Meier, and W. Drexler  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24162-24174 (2009)
http://dx.doi.org/10.1364/OE.17.024162


View Full Text Article

Enhanced HTML    Acrobat PDF (673 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Depth resolved measurements of absorption profiles in the wavelength range of 800 nm with a bandwidth of 120 nm are demonstrated using high speed spectroscopic frequency domain OCT (SOCT) and a full range reconstruction algorithm (dispersion encoded full range, DEFR). The feasibility of the algorithm for SOCT is tested in simulation and experiment. With proper calibration, SOCT with DEFR is able to extract absolute, depth resolved absorption profiles over the whole wavelength range at once without the need of tuning and performing measurements at single wavelengths sequentially. The superior acquisition speed and better phase stability in frequency domain as compared to time domain results in a better reproducibility and practicability for spectroscopic measurements. In addition, high acquisition speed in excess of 20 kHz allows to measure absorption dynamics with 50 µs time resolution, which might be useful for the investigation of pharmacokinetics or pharmacodynamics. SOCT of ~600 µm thick single- and multilayered, non–scattering phantoms with varying absorption in the range of 5–80 cm-1, equivalent to blood absorption in capillaries, is presented. SOCT measurements are compared with those using a spectrometer in transmission mode. For Indocyanine Green (ICG), dynamic absorption measurements are demonstrated.

© 2009 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(260.2030) Physical optics : Dispersion

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 8, 2009
Revised Manuscript: November 15, 2009
Manuscript Accepted: December 12, 2009
Published: December 17, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Boris Hermann, Bernd Hofer, Christoph Meier, and Wolfgang Drexler, "Spectroscopic measurements with dispersion encoded full range frequency domain optical coherence tomography in single- and multilayered non- scattering phantoms," Opt. Express 17, 24162-24174 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-26-24162


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. J. S. Schumann, C. A. Puliafito, and J. G. Fujimoto, Optical coherence tomography of ocular diseases (SLACK Incorporated, 2004).
  3. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005). [CrossRef] [PubMed]
  4. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases." Invest. Ophthalmol. Vis. Sci. 46, 3393-3402 (2005). [CrossRef] [PubMed]
  5. W. Drexler and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography." Prog. Retin. Eye Res. 27, 45-88 (2008). [CrossRef]
  6. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  7. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging," J. Am. Coll. Cardiol. Img. 1, 762-764 (2008).
  8. D. C. Adler, C. Zhou, T.-H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, "Three-dimensional endomicroscopy of the human colon using optical coherence tomography," Opt. Express 17, 784-796 (2009). [CrossRef] [PubMed]
  9. D. Faber, E. Mik, M. Alders, and T. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1437-1439 (2003). [CrossRef]
  10. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett.  93, 028102-1-028102-4 (2004). [CrossRef]
  11. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Differential absorption imaging with optical coherence tomography," J. Opt. Soc. Am. A 15, 2288-2296 (1998). [CrossRef]
  12. U. Morgner, W. Drexler, F. K¨artner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 2, 111-113 (2000). [CrossRef]
  13. R. Leitgeb, M. Wojtkowski, A. Kowalczky, C.K. Hitzenberger, M. Sticker, and A. Fercher, "Spectral measurement of absorption by frequency domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000). [CrossRef]
  14. C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, "Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm," Opt. Express 12, 4790-4803 (2004). [CrossRef] [PubMed]
  15. C. Xu, P. Carney, and S. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005). [CrossRef] [PubMed]
  16. C. Xu, F. Kamalabadi, and S. A. Boppart, "Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography," Appl. Opt. 44, 1813-1822 (2005). [CrossRef] [PubMed]
  17. B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. Fercher, and W. Drexler, "Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography," Opt. Express 12, 1677-1688 (2004). [CrossRef] [PubMed]
  18. J. Yi, J. Gong, and X. Li, "Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography," Opt. Express 17, 13157-13167 (2009). [CrossRef] [PubMed]
  19. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Lett. 11, 889-894 (2003).
  20. B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009). [CrossRef] [PubMed]
  21. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  22. B. Saleh and M. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991).
  23. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited