OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

Image reconstruction in diffuse optical tomography based on simplified spherical harmonics approximation

Michael Chu and Hamid Dehghani  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24208-24223 (2009)
http://dx.doi.org/10.1364/OE.17.024208


View Full Text Article

Enhanced HTML    Acrobat PDF (865 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of higher order approximations to the Radiative transport equation, through simplified spherical harmonics expansion (SPN) in optical tomography are presented. It is shown that, although the anisotropy factor can be modeled in the forward problem, its sensitivity to the measured boundary data is limited to superficial regions and more importantly, due to uniqueness of the inverse problem it cannot be determined using frequency domain data. Image reconstruction through the use of higher ordered models is presented. It is demonstrated that at higher orders (for example SP7) the image reconstruction becomes highly under-determined due to the large increase in the number of unknowns which cannot be adequately recovered. However, reconstruction of diffuse parameters, namely optical absorption and reduced scatter have shown to be more accurate where only the sensitivity matrix used in the inverse problem is based on SPN method and image reconstruction is limited to these two diffuse parameters.

© 2009 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 25, 2009
Revised Manuscript: November 13, 2009
Manuscript Accepted: December 12, 2009
Published: December 18, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Michael Chu and Hamid Dehghani, "Image reconstruction in diffuse optical tomography based on simplified spherical harmonics approximation," Opt. Express 17, 24208-24223 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-26-24208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005). [CrossRef] [PubMed]
  2. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108(1), 9–22 (2008). [CrossRef] [PubMed]
  3. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001). [CrossRef]
  4. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005). [CrossRef] [PubMed]
  5. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003). [CrossRef] [PubMed]
  6. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Img. 20(12), 1334–1340 (2001). [CrossRef]
  7. L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46(17), 3628–3638 (2007). [CrossRef] [PubMed]
  8. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007). [CrossRef] [PubMed]
  9. D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29(13), 1506–1508 (2004). [CrossRef] [PubMed]
  10. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett. 28(21), 2061–2063 (2003). [CrossRef] [PubMed]
  11. J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49(7), 1117–1130 (2004). [CrossRef] [PubMed]
  12. A. Y. Bluestone, G. Abdoulaev, C. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9(6), 272–286 (2001). [CrossRef] [PubMed]
  13. A. D. Klose and A. H. Hielscher, “Fluorescence tomography with simulated data based on the equation of radiative transfer,” Opt. Lett. 28(12), 1019–1021 (2003). [CrossRef] [PubMed]
  14. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006). [CrossRef] [PubMed]
  15. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66(1), 55–64 (1997). [CrossRef] [PubMed]
  16. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(4225), 4241 (2005). [CrossRef]
  17. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4(1), 235–260 (2002). [CrossRef] [PubMed]
  18. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” JBO 12, 24007 (2007).
  19. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006). [CrossRef] [PubMed]
  20. H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008). [CrossRef] [PubMed]
  21. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999). [CrossRef]
  22. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near Infrared Optical Tomography using NIRFAST: Algorithms for Numerical Model and Image Reconstruction Algorithms,” Communications in Numerical Methods in Engineering (2008).
  23. A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999). [CrossRef] [PubMed]
  24. J. Riley, H. Dehghani, M. Schweiger, S. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express 7(13), 462–467 (2000). [CrossRef] [PubMed]
  25. S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions,” Med. Phys. 27(1), 252–264 (2000). [CrossRef] [PubMed]
  26. H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. 17(9), 1659–1670 (2000). [CrossRef]
  27. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43(5), 1285–1302 (1998). [CrossRef] [PubMed]
  28. J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A 17(9), 1671–1681 (2000). [CrossRef]
  29. K. M. Case, and P. F. Zweifel, Linear Transport Theory (Addidon-Wesley, Reading, MA, 1967).
  30. H. B. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4(8), 241–246 (1999). [CrossRef] [PubMed]
  31. S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the P-N approximations,” Meas. Sci. Technol. 18(1), 79–86 (2007). [CrossRef]
  32. E. D. Aydin, C. R. E. de Oliveira, and A. J. H. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29(9), 2013–2023 (2002). [CrossRef] [PubMed]
  33. A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer — Part 1: forward model,” J. Quant. Spectrosc. Radiat. Transf. 72(5), 691–713 (2002). [CrossRef]
  34. S. Cahandrasekhar, Radiative Transfer (Clarendon Press, London, 1950).
  35. A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220(1), 441–470 (2006). [CrossRef]
  36. M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009). [CrossRef] [PubMed]
  37. G. Marquez, L. V. Wang, S. P. Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37(4), 798–804 (1998). [CrossRef] [PubMed]
  38. S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45(10), 2873–2886 (2000). [CrossRef] [PubMed]
  39. S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part2: Finite-element-method calculations,” Appl. Opt. 34(34), 8026–8037 (1995). [CrossRef] [PubMed]
  40. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23(11), 882–884 (1998). [CrossRef] [PubMed]
  41. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42(16), 3117–3128 (2003). [CrossRef] [PubMed]
  42. M. E. Eames and H. Dehghani, “Wavelength dependence of sensitivity in spectral diffuse optical imaging: effect of normalization on image reconstruction,” Opt. Express 16(22), 17780–17791 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited