OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 4 — Apr. 1, 2009

Photostimulation of astrocytes with femtosecond laser pulses

Yuan Zhao, Yuan Zhang, Xiuli Liu, Xiaohua Lv, Wei Zhou, Qingming Luo, and Shaoqun Zeng  »View Author Affiliations

Optics Express, Vol. 17, Issue 3, pp. 1291-1298 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The involvement of astrocytes in brain functions rather than support has been identified and widely concerned. However the lack of an effective stimulation of astrocytes hampers our understanding of their essential roles. Here, we employed 800-nm near infrared (NIR) femtosecond laser to induce Ca2+ wave in astrocytes. It was demonstrated that photostimulation of astrocytes with femtosecond laser pulses is efficient with the advantages of non-contact, non-disruptiveness, reproducibility, and high spatiotemporal precision. Photostimulation of astrocytes would facilitate investigations on information processing in neuronal circuits by providing effective way to excite astrocytes.

© 2009 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(170.1530) Medical optics and biotechnology : Cell analysis
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 6, 2008
Revised Manuscript: December 12, 2008
Manuscript Accepted: January 12, 2009
Published: January 21, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Yuan Zhao, Yuan Zhang, Xiuli Liu, Xiaohua Lv, Wei Zhou, Qingming Luo, and Shaoqun Zeng, "Photostimulation of astrocytes with femtosecond laser pulses," Opt. Express 17, 1291-1298 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Volterra and J. Meldolesi, "Astrocytes, from brain glue to communication elements: the revolution continues," Nat. Rev. Neurosci. 6, 626-640 (2005). [CrossRef] [PubMed]
  2. M. Nedergaard, B. Ransom, and S. A. Goldman, "New roles for astrocytes: redefining the functional architecture of the brain," Trends Neurosci. 26, 523-530 (2003). [CrossRef] [PubMed]
  3. M. Nedergaard, "Direct signaling from astrocytes to neurons in cultures of mammalian brain cells," Science 263, 1768-1771 (1994). [CrossRef] [PubMed]
  4. P. G. Haydon and G. Carmignoto, "Astrocyte control of synaptic transmission and neurovascular coupling," Physiol. Rev. 86, 1009-1031 (2006). [CrossRef] [PubMed]
  5. G. Carmignoto, "Reciprocal communication systems between astrocytes and neurones," Prog. Neurobiol. 62, 561-581 (2000). [CrossRef] [PubMed]
  6. M. Simard, G. Arcuino, T. Takano, Q. S. Liu, and M. Nedergaard, "Signaling at the gliovascular interface," J. Neurosci. 23, 9254-9262 (2003). [PubMed]
  7. J. Schummers, H. Yu, and M. Sur, "Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex," Science 320, 1638-1643 (2008). [CrossRef] [PubMed]
  8. A. C. Charles, J. E. Merrill, E. R. Dirksen, and M. J. Sanderson, "Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate," Neuron 6, 983-992 (1991). [CrossRef] [PubMed]
  9. T. A. Fiacco and K. D. McCarthy, "Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons," J. Neurosci. 24, 722-732 (2004). [CrossRef] [PubMed]
  10. J. T. Porter and K. D. McCarthy, "Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ," J. Neurochem. 65, 1515-1523 (1995). [CrossRef] [PubMed]
  11. W. Wantanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "In vivo manipulation of fluorescently labeled organelles in living cells by multiphoton excitation," J. Biomed. Opt. 13, 031213 (2008). [CrossRef]
  12. W. Wantanabe, T. Shimada, S. Matsunaga, D. Kurihara, K. Fukui, S. Arimura, N. Tsutsumi, K. Isobe, and K. Itoh, "Single-organelle tracking by two-photon conversion," Opt. Express 15, 2490-2498 (2007). [CrossRef]
  13. K. König, I. Riemann, and W. Fritzsche, "Nanodissection of human chromosomes with near-infrared femtosecond laser pulses," Opt. Lett. 26, 819-821 (2001). [CrossRef]
  14. W. Wantanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12, 4203-4213 (2004). [CrossRef]
  15. U. K. Tirlapur and K. König, "Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability," The Plant Journal 31, 365-374 (2002). [CrossRef] [PubMed]
  16. N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001). [CrossRef]
  17. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, "Functional regeneration after laser axotomy," Nature 432, 822-822 (2004). [CrossRef] [PubMed]
  18. L. Sacconi, R. P. O'Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, "In vivo multiphoton nanosurgery on cortical neurons," J. Biomed. Opt. 12, 050502 (2007). [CrossRef] [PubMed]
  19. N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, "A femtosecond laser pacemaker for heart muscle cells," Opt. Express 16, 8604-8616 (2008). [CrossRef] [PubMed]
  20. W. Zhou, X. Liu, X. Lv, J. Li, Q. Luo, and S. Zeng, "Monitor and control of neuronal activities with femtosecond pulse laser," Chinese Sci. Bull. 53, 687-694 (2008). [CrossRef]
  21. N. I. Smith, S. Iwanaga, T. Beppu, K. Fujita, O. Nakamura, and S. Kawata, "Photostimulation of two types of Ca2+ waves in rat pheochromocytoma PC12 cells by ultrashort pulsed near-infrared laser irradiation," Laser Phys. Lett. 3, 154-161 (2006). [CrossRef]
  22. N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, "Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke," Nat. Methods 3 (2006). [CrossRef] [PubMed]
  23. S. Iwanaga, T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-dependent photogeneration of calcium waves in HeLa cells," Cell Biochem. Biophys. 45, 167-176 (2006). [CrossRef] [PubMed]
  24. U. K. Tirlapur and K. König, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002). [CrossRef] [PubMed]
  25. Z. Zhang, G. Chen, W. Zhou, A. Song, T. Xu, Q. Luo, W. Wang, X.-s. Gu, and S. Duan, "Regulated ATP release from astrocytes through lysosome exocytosis," Nat. Cell Biol. 9, 945-953 (2007). [CrossRef] [PubMed]
  26. X. Lv, C. Zhan, S. Zeng, W. R. Chen, and Q. Luo, "Construction of multiphoton laser scanning microscope based on dual-axis acousto-optic deflector," Rev. Sci. Instrum. 77, 046101 (2006). [CrossRef]
  27. Y. Bernardinelli, P. J. Magistretti, and J. Y. Chatton, "Astrocytes generate Na+-mediated metabolic waves," Proc. Natl. Acad. Sci. USA 101, 14937-14942 (2004). [CrossRef] [PubMed]
  28. B. Innocenti, V. Parpura, and P. G. Haydon, "Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes," J. Neurosci. 20, 1800-1808 (2000). [PubMed]
  29. A. Charles, "Intercellular calcium waves in glia," Glia 24, 39-49 (1998). [CrossRef] [PubMed]
  30. E. A. Newman, "Propagation of intercellular calcium waves in retinal astrocytes and müller cells," J. Neurosci. 21, 2215-2223 (2001). [PubMed]
  31. L. Leybaert, K. Paemeleire, A. Strahonja, and M. J. Sanderson, "Inositol-trisphosphate-dependent intercellular calcium signaling in and between astrocytes and endothelial cells," Glia 24, 398-407 (1998). [CrossRef] [PubMed]
  32. F. DelPrincipe, M. Egger, G. C. R. Ellis-Davies, and E. Niggli, "Two-photon and UV-laser flash photolysis of the Ca2+ cage," Cell Calcium 25, 85-91 (1999). [CrossRef] [PubMed]
  33. E. B. Brown, J. B. Shear, S. R. Adams, R. Y. Tsien, and W. W. Webb, "Photolysis of caged calcium in femtoliter volumes using two-photon excitation," Biophys. J 76, 489-499 (1999). [CrossRef] [PubMed]
  34. G. C. R. Ellis-Davies, "DM-nitrophen AM is caged magnesium," Cell Calcium 39, 471-473 (2006). [CrossRef] [PubMed]
  35. G. C. Faas, K. Karacs, J. L. Vergara, and I. Mody, "Kinetic properties of DM-nitrophen binding to calcium and magnesium," Biophys. J 88, 4421-4433 (2005). [CrossRef] [PubMed]
  36. H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, "Multiphoton stimulation of neurons," J Neurobiol. 51, 237-247 (2002). [CrossRef] [PubMed]
  37. J. W. Deitmer, A. Verkhratsky, and C. Lohr, "Calcium signalling in glial cells," Cell Calcium 24, 405-416 (1998). [CrossRef]
  38. A. Verkhratsky, R. K. Orkand, and H. Kettenmann, "Glial calcium: homeostasis and signaling function," Physol. Rev. 78, 99-141 (1998).
  39. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance of optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys. B 68, 271-280 (1999). [CrossRef]
  40. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1219 KB)     
» Media 2: AVI (456 KB)     
» Media 3: AVI (210 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited