OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 5 — May. 5, 2009

Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography

Yoshiaki Yasuno, Masahiro Yamanari, Keisuke Kawana, Tetsuro Oshika, and Masahiro Miura  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3980-3996 (2009)
http://dx.doi.org/10.1364/OE.17.003980


View Full Text Article

Enhanced HTML    Acrobat PDF (3656 KB) Open Access ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A sequential case series of post-glaucoma-surgery structures examined by three-dimensional corneal and anterior eye segment optical coherence tomography (3D-CASOCT) and 3D polarization sensitive CASOCT (PS-CASOCT) is presented. A total of 5 patients who underwent glaucoma surgery were included in this study. Of these, 1, 1, and 3 patient underwent trabeculotomy, laser iridotomy, and trabeculectomy respectively. One patient each who had undergone trabeculotomy or laser iridotomy was examined using a prototype 3D-CASOCT. This prototype is based on swept-source OCT technology, uses a probe beam with a center wavelength of 1.31 µm, and has an axial resolution of 11.6 µm and a scanning speed of 20,000 A lines/s. All 3 patients who underwent trabeculectomy were examined by PS-CASOCT, which has similar specifications to those of 3DCASOCT, measures the depth-resolved birefringence of a specimen, and yields conventional OCT images. Detailed 3D visualization of the incision site of trabeculotomy and the ablation site of laser iridotomy was achieved using 3D-CASOCT. PS-CASOCT revealed, in addition to the structural details, the birefringent properties of the tissues of the trabeculectomy bleb. Some blebs showed abnormal birefringence in the conjunctiva and in a remnant fluid pool. This may indicate the existence of fibrosis in these regions. Both 3D-CASOCT and PS-CASOCT provide clinically significant information for the postoperative assessment of structures created during glaucoma surgery. Interactive 3D datasets of all cases are provided for interactive clinical review. Complex raw 3D OCT volumes are also provided as a reference dataset for the development of PS-OCT algorithms.

© 2009 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
OCT in Glaucoma

History
Original Manuscript: August 5, 2008
Revised Manuscript: January 22, 2009
Manuscript Accepted: January 25, 2009
Published: March 2, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics
Interactive Science Publishing Focus Issue: Optical Coherence Tomography (OCT) (2009) Optics Express

Citation
Yoshiaki Yasuno, Masahiro Yamanari, Keisuke Kawana, Testuro Oshika, and Masahiro Miura, "Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography," Opt. Express 17, 3980-3996 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-5-3980


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Thylefors and A. D. Négrel, "The global impact of glaucoma," Bull World Health Organ. 72, 323-326 (1994).
  2. B. Thylefors, A. D. Ngrel, R. Pararajasegaram, and K. Y. Dadzie, "Global data on blindness," Bull World Health Organ. 73, 115-121 (1995).
  3. C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, "The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage," Prog. Retin. Eye Res. 24, 39-73 (2005). [CrossRef]
  4. D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  5. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993). [CrossRef] [PubMed]
  6. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994). [PubMed]
  7. S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001). [PubMed]
  8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  9. G. Häusler and M. W. Lindner, ""Coherence rader" and "spectral radar"—New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  10. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  11. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  12. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11, 3598-3604 (2003). [CrossRef] [PubMed]
  13. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005). [CrossRef] [PubMed]
  14. K. Kawana, Y. Yasuno, T. Yatagai, and T. Oshika, "High-Speed, swept-source optical coherence tomography: a 3-dimensional view of anterior chamber angle recession," Acta Ophthalmol. Scand. 85, 684-685 (2007). [CrossRef] [PubMed]
  15. M. Miura, H. Mori, Y. Watanabe,M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, "Three-dimensional optical coherence tomography of granular corneal dystrophy," Cornea 26, 373-374 (2007). [CrossRef] [PubMed]
  16. M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008). [CrossRef] [PubMed]
  17. C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, "Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging," Opt. Express 15, 7117-7125 (2007). [CrossRef] [PubMed]
  18. M. V. Sarunic, S. Asrani, and J. A. Izatt, "Imaging the Ocular Anterior Segment With Real-Time, Full-Range Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 537-542 (2008). [CrossRef] [PubMed]
  19. S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, "Detailed Visualization of the Anterior Segment Using Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 765-771 (2008). [CrossRef] [PubMed]
  20. M. R. Chalita, Y. Li, S. Smith, C. Patil, V. Westphal, A.M. Rollins, J. A. Izatt, and D. Huang, "High-speed optical coherence tomography of laser iridotomy," Am. J. Ophthalmol. 140, 1133-1136 (2005). [CrossRef] [PubMed]
  21. X. J. Wang, T. E. Milner, and J. S. Nelson, "Characterization of fluid flow velocity by optical Doppler tomography," Opt. Lett. 20, 1337-1339 (1995). [CrossRef] [PubMed]
  22. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997). [CrossRef] [PubMed]
  23. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003). [CrossRef] [PubMed]
  24. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003). [CrossRef] [PubMed]
  25. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006). [CrossRef] [PubMed]
  26. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump probe technique," Opt. Lett. 28, 340-342 (2003). [CrossRef] [PubMed]
  27. B. E. Applegate, C. Yang, and J. A. Izatt, "Theoretical comparison of the sensitivity of molecular contrast optical coherence tomography techniques," Opt. Express 13, 8146-8163 (2005). [CrossRef] [PubMed]
  28. Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using threedimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006). [CrossRef] [PubMed]
  29. Y. Hong, S. Makita,M. Yamanari,M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538-7550 (2007). [CrossRef] [PubMed]
  30. Y. Yasuno, Y. Hong, S. Makita,M. Yamanari,M. Akiba,M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007). [CrossRef] [PubMed]
  31. C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, "Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis," J. Biomed. Opt. 13, 024003 (pages 9) (2008). [CrossRef] [PubMed]
  32. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, "Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography," J. Biomed. Opt. 13, 034003 (pages 8) (2008). [CrossRef] [PubMed]
  33. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997). [CrossRef] [PubMed]
  34. J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999). [CrossRef]
  35. S. Jiao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography," Opt. Lett. 27, 101-103 (2002). [CrossRef]
  36. S. Jiao, M. Todorović, G. Stoica, and L. V. Wang, "Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation," Appl. Opt. 44, 5463-5467 (2005). [CrossRef] [PubMed]
  37. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002). [CrossRef]
  38. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004). [CrossRef]
  39. E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express. 12, 10217-10229 (2005).
  40. S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, "Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography," Appl. Opt. 45, 1142-1147 (2006). [CrossRef] [PubMed]
  41. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented PolarizationModulationMethod," Opt. Express 14, 6502-6515 (2006). [CrossRef] [PubMed]
  42. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, "Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera," Opt. Express 15, 2421-2431 (2007). [CrossRef] [PubMed]
  43. W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, "Highspeed polarization sensitive optical frequency domain imaging with frequency multiplexing," Opt. Express 16, 1096-1103 (2008). [CrossRef] [PubMed]
  44. W. Y. Oh, B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation," Opt. Lett. 33, 1330-1332 (2008). [CrossRef] [PubMed]
  45. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002). [CrossRef]
  46. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (pages 10) (2008). [CrossRef] [PubMed]
  47. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Inv. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006). [CrossRef]
  48. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging Polarimetry in Age-Related Macular Degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008). [CrossRef] [PubMed]
  49. M. Pircher, E. Götzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004). [CrossRef] [PubMed]
  50. C. K. Hitzenberger, E. Götzinger, and M. Pircher, "Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography," Bull Soc Belge Ophtalmol. 302, 153-168 (2006).
  51. E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. K. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 48, 3551-3558 (2007). [CrossRef] [PubMed]
  52. M. Yamanari, S. Makita, and Y. Yasuno, "Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation," Opt. Express 16, 5892-5906 (2008). [CrossRef] [PubMed]
  53. C. Chong, A. Morosawa, and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008). [CrossRef]
  54. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  55. K. Kawana, T. Kiuchi, Y. Yasuno, and T. Oshika, "Evaluation of trabeculectomy blebs by using three-dimensional cornea and anterior segment optical coherence tomography," Ophthalmology, accepted to publication.
  56. I. P. Pollack, "Current concepts in laser iridotomy," Int. Ophthalmol. Clin. 24, 153-180 (1984). [PubMed]
  57. A. L. Schwartz, N. F. Martin, and P. A. Weber, "Corneal decompensation after argon laser iridectomy," Arch. Ophthalmol. 106, 1572-1574 (1988). [PubMed]
  58. Y. Yamamoto, T. Uno, K. Shisida, L. Xue, A. Shiraishi, X. Zheng, and Y. Ohashi, "Demonstration of aqueous streaming through a laser iridotomy window against the corneal endothelium," Arch. Ophthalmol. 124, 387-393 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited