OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 2 — Jan. 21, 2010

Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index

Hae Young Choi, Gopinath Mudhana, Kwan Seob Park, Un-Chul Paek, and Byeong Ha Lee  »View Author Affiliations

Optics Express, Vol. 18, Issue 1, pp. 141-149 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (634 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a cross-talk free simultaneous measurement system for temperature and external refractive index (ERI) implemented by dual-cavity Fabry-Perot (FP) fiber interferometer. The sensing probe consists of two cascaded FP cavities formed with a short piece of multimode fiber (MMF) and a micro-air-gap made of hollow core fiber (HOF). The fabricated sensor head was ultra-compact; the total length of the sensing part was less than 600 μm. Since the reflection spectrum of the composite FP structures is given by the superposition of each cavity spectrum, the spectrum measured in the wavelength domain was analyzed in the Fourier or spatial frequency domain. The experimental results showed that temperature could be determined independently from the spatial frequency shift without being affected by the ERI, while the ERI could be also measured solely by monitoring the intensity variation in the spatial frequency spectrum. The ERI and the temperature sensitivities were approximately 16 dB/RIU for the 1.33-1.45 index range, and 8.9 nm/°C at low temperature and 14.6 nm/°C at high temperature, respectively. In addition, it is also demonstrated that the proposed dual-cavity FP sensor has potential for compensating any power fluctuation that might happen in the input light source.

© 2009 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:

Original Manuscript: October 19, 2009
Revised Manuscript: December 11, 2009
Manuscript Accepted: December 14, 2009
Published: December 22, 2009

Virtual Issues
Vol. 5, Iss. 2 Virtual Journal for Biomedical Optics

Hae Young Choi, Gopinath Mudhana, Kwan Seob Park, Un-Chul Paek, and Byeong Ha Lee, "Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index," Opt. Express 18, 141-149 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Culshaw, “Optical Fiber Sensor Technologies: Opportunities and - Perhaps - Pitfalls,” J. Lightwave Technol. 22(1), 39–50 (2004). [CrossRef]
  2. Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999). [CrossRef]
  3. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003). [CrossRef]
  4. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006). [CrossRef]
  5. O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7(11), 2970–2983 (2007). [CrossRef]
  6. M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair,” IEEE Photon. Technol. Lett. 20(15), 1290–1292 (2008). [CrossRef]
  7. T. Guo, X. Qiao, Z. Jia, Q. Zhao, and X. Dong, “Simultaneous measurement of temperature and pressure by a single fiber Bragg grating with a broadened reflection spectrum,” Appl. Opt. 45(13), 2935–2939 (2006). [CrossRef] [PubMed]
  8. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009). [CrossRef]
  9. T. Zhu, Y.-J. Rao, and Q.-J. Mo, “Simultaneous measurement of Refractive Index and Temperature using a single ultralong-Period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005). [CrossRef]
  10. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001). [CrossRef] [PubMed]
  11. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005). [CrossRef]
  12. H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33(8), 812–814 (2008). [CrossRef] [PubMed]
  13. Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008). [CrossRef]
  14. X. Wan and H. F. Taylor, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27(16), 1388–1390 (2002). [CrossRef] [PubMed]
  15. T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008). [CrossRef] [PubMed]
  16. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement,” Appl. Opt. 44(26), 5368–5373 (2005). [CrossRef] [PubMed]
  17. L.- Yuana, L.- Zhoub, and J. Wu, “Fiber optic temperature sensor with duplex Michleson interferometric technique,” Sens. Actuators A Phys. 86(1-2), 2–7 (2000). [CrossRef]
  18. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In-line fiber étalon for strain measurement,” Opt. Lett. 18(22), 1973–1975 (1993). [CrossRef] [PubMed]
  19. X. Wan, H. F. Taylor, K. L. Cooper, and A. Wang, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27(16), 1388–1390 (2002). [CrossRef] [PubMed]
  20. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008). [CrossRef] [PubMed]
  21. Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006). [CrossRef]
  22. D. W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor,” Opt. Lett. 30(22), 3000–3002 (2005). [CrossRef] [PubMed]
  23. Y. Zhang, X. C. Y. Wang, K. L. Cooper, and A. Wang, “Microgap Multicavity Fabry–Pérot Biosensor,” J. Lightwave Technol. 25, 1797–1804 (2007).
  24. Y.-J. Rao, M. Deng, T. Zhu, and H. Li, “In-Line Fabry–Perot Etalons Based on Hollow-Core Photonic Bandgap Fibers for High-Temperature Applications,” J. Lightwave Technol. 27(19), 4360–4365 (2009). [CrossRef]
  25. W.-H. Tsai and C.-J. Lin, “A Novel Structure for the Intrinsic Fabry-Perot Fiber-Optic Temperature Sensor,” J. Lightwave Technol. 19(5), 682–686 (2001). [CrossRef]
  26. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008). [CrossRef] [PubMed]
  27. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited