OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Automated suppression of sample-related artifacts in Fluorescence Correlation Spectroscopy

Jonas Ries, Mathias Bayer, Gábor Csúcs, Ronald Dirkx, Michele Solimena, Helge Ewers, and Petra Schwille  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11073-11082 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (925 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence Correlation Spectroscopy (FCS) in cells often suffers from artifacts caused by bright aggregates or vesicles, depletion of fluorophores or bleaching of a fluorescent background. The common practice of manually discarding distorted curves is time consuming and subjective. Here we demonstrate the feasibility of automated FCS data analysis with efficient rejection of corrupted parts of the signal. As test systems we use a solution of fluorescent molecules, contaminated with bright fluorescent beads, as well as cells expressing a fluorescent protein (ICA512-EGFP), which partitions into bright secretory granules. This approach improves the accuracy of FCS measurements in biological samples, extends its applicability to especially challenging systems and greatly simplifies and accelerates the data analysis.

© 2010 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1420) Medical optics and biotechnology : Biology
(170.1530) Medical optics and biotechnology : Cell analysis
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(180.0180) Microscopy : Microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 30, 2010
Revised Manuscript: April 19, 2010
Manuscript Accepted: April 21, 2010
Published: May 11, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Jonas Ries, Mathias Bayer, Gábor Csúcs, Ronald Dirkx, Michele Solimena, Helge Ewers, and Petra Schwille, "Automated suppression of sample-related artifacts in Fluorescence Correlation Spectroscopy," Opt. Express 18, 11073-11082 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. L. Elson and D. Magde, "Fluorescence correlation spectroscopy. I. Conceptual basis and theory," Biopolymers 13 (1), 1-27 (1974). [CrossRef]
  2. R. Rigler and E. Elson, Fluorescence Correlation Spectroscopy: Theory and Applications, (Springer, 2001). [CrossRef]
  3. E. P. Petrov and P. Schwille, State of the art and novel trends in fluorescence correlation spectroscopy, in: Standardization in Fluorometry: State of the Art and Future Challenges, (Springer, Berlin Heidelberg New York, 2007). [PubMed]
  4. K. Bacia and P. Schwille, "A dynamic view of cellular processes by in vivo fluorescence auto-and crosscorrelation spectroscopy," Methods 29(1), 74-85 (2003). [CrossRef] [PubMed]
  5. T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, "Two-Focus Fluorescence Correlation Spectroscopy: A New Tool for Accurate and Absolute Diffusion Measurements," ChemPhysChem 8(3), 433-443 (2007). [CrossRef] [PubMed]
  6. S. Kim, K. Heinze, and P. Schwille, "Fluorescence correlation spectroscopy in living cells," Nat. Methods 4(11), 963-974 (2007). [CrossRef] [PubMed]
  7. K. Bacia, S. Kim, and P. Schwille, "Fluorescence cross-correlation spectroscopy in living cells," Nat. Methods 3(2), 83-89 (2006). [CrossRef] [PubMed]
  8. J. Ries and P. Schwille, "New Concepts for Fluorescence Correlation Spectroscopy on Membranes," Phys. Chem. Chem. Phys. 10(24), 3487-3497 (2008). [CrossRef] [PubMed]
  9. S. R. Yu,M. Burkhardt, M. Nowak, J. Ries, Z. Petr’asek, S. Scholpp, P. Schwille, and M. Brand, "Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules," Nature 461(7263), 533-536 (2009). [CrossRef] [PubMed]
  10. D. Magatti and F. Ferri, "Fast multi-tau real-time software correlator for dynamic light scattering," Appl. Opt. 40(24), 4011-4021 (2001). [CrossRef]
  11. A. Tcherniak, C. Reznik, S. Link, and C. F. Landes, "Fluorescence correlation spectroscopy: criteria for analysis in complex systems," Anal. Chem. 81(2), 746-754 (2009). [CrossRef]
  12. M. Asfari, D. Janjic, P. Meda, G. Li, P. A. Halban, and C. B. Wollheim, "Establishment of 2-mercaptoethanoldependent differentiated insulin-secreting cell lines," Endocrinology 130(1), 167-178 (1992). [CrossRef] [PubMed]
  13. M. Trajkovski, H. Mziaut, A. Altkruger, J. Ouwendijk, K. P. Knoch, S. Muller, and M. Solimena, "Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in beta-cells," J. Cell. Biol. 167(6), 1063-1074 (2004). [CrossRef] [PubMed]
  14. C. C. Guet, L. Bruneaux, T. L. Min, D. Siegal-Gaskins, I. Figueroa, T. Emonet, and P. Cluzel, "Minimally invasive determination of mRNA concentration in single living bacteria," Nucleic Acids Res. 36(12), e73 (2008). [CrossRef] [PubMed]
  15. G. Meacci, J. Ries, E. Fischer-Friedrich, N. Kahya, P. Schwille, and K. Kruse, "Mobility of Min-proteins in Escherichia coli measured by fluorescence correlation spectroscopy," Phys. Biol. 3(4), 255-263 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited