OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

Photon-tissue interaction model enables quantitative optical analysis of human pancreatic tissues

Robert H. Wilson, Malavika Chandra, Leng-Chun Chen, William R. Lloyd, James Scheiman, Diane Simeone, Julianne Purdy, Barbara McKenna, and Mary-Ann Mycek  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 21612-21621 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1084 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photon-tissue interaction (PTI) model was developed and employed to analyze 96 pairs of reflectance and fluorescence spectra from freshly excised human pancreatic tissues. For each pair of spectra, the PTI model extracted a cellular nuclear size parameter from the measured reflectance, and the relative contributions of extracellular and intracellular fluorophores to the intrinsic fluorescence. The results suggest that reflectance and fluorescence spectroscopies have the potential to quantitatively distinguish among pancreatic tissue types, including normal pancreatic tissue, pancreatitis, and pancreatic adenocarcinoma.

© 2010 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 16, 2010
Revised Manuscript: September 22, 2010
Manuscript Accepted: September 23, 2010
Published: September 28, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Robert H. Wilson, Malavika Chandra, Leng-Chun Chen, William R. Lloyd, James Scheiman, Diane Simeone, Julianne Purdy, Barbara McKenna, and Mary-Ann Mycek, "Photon-tissue interaction model enables quantitative optical analysis of human pancreatic tissues," Opt. Express 18, 21612-21621 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. “Cancer Facts & Figures 2010,” (American Cancer Society, 2010), www.cancer.org .
  2. A. Fritscher-Ravens, L. Brand, W. T. Knöfel, C. Bobrowski, T. Topalidis, F. Thonke, A. de Werth, and N. Soehendra, “Comparison of endoscopic ultrasound-guided fine needle aspiration for focal pancreatic lesions in patients with normal parenchyma and chronic pancreatitis,” Am. J. Gastroenterol. 97(11), 2768–2775 (2002). [CrossRef] [PubMed]
  3. W. Hartwig, L. Schneider, M. K. Diener, F. Bergmann, M. W. Büchler, and J. Werner, “Preoperative tissue diagnosis for tumours of the pancreas,” Br. J. Surg. 96(1), 5–20 (2009). [CrossRef]
  4. S. C. Abraham, R. E. Wilentz, C. J. Yeo, T. A. Sohn, J. L. Cameron, J. K. Boitnott, and R. H. Hruban, “Pancreaticoduodenectomy (Whipple resections) in patients without malignancy: are they all ‘chronic pancreatitis’?” Am. J. Surg. Pathol. 27(1), 110–120 (2003). [CrossRef]
  5. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008). [CrossRef] [PubMed]
  6. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999). [CrossRef]
  7. S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006). [CrossRef] [PubMed]
  8. I. Georgakoudi and M. S. Feld, “The combined use of fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in Barrett’s esophagus,” Gastrointest. Endosc. Clin. N. Am. 14(3), 519–537, ix (2004). [CrossRef] [PubMed]
  9. P. A. Testoni, B. Mangiavillano, L. Albarello, P. G. Arcidiacono, A. Mariani, E. Masci, and C. Doglioni, “Optical coherence tomography to detect epithelial lesions of the main pancreatic duct: an Ex Vivo study,” Am. J. Gastroenterol. 100(12), 2777–2783 (2005). [CrossRef]
  10. P. A. Testoni, A. Mariani, B. Mangiavillano, P. G. Arcidiacono, S. Di Pietro, and E. Masci, “Intraductal optical coherence tomography for investigating main pancreatic duct strictures,” Am. J. Gastroenterol. 102(2), 269–274 (2007). [CrossRef]
  11. V. R. Kondepati, J. Zimmermann, M. Keese, J. Sturm, B. C. Manegold, and J. Backhaus, “Near-infrared fiber optic spectroscopy as a novel diagnostic tool for the detection of pancreatic cancer,” J. Biomed. Opt. 10(5), 054016 (2005). [CrossRef] [PubMed]
  12. H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34(4), 518–520 (2009). [CrossRef] [PubMed]
  13. M. Chandra, J. Scheiman, D. Heidt, D. Simeone, B. McKenna, and M.-A. Mycek, “Probing pancreatic disease using tissue optical spectroscopy,” J. Biomed. Opt. 12(6), 060501 (2007). [CrossRef]
  14. M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M.-A. Mycek, “Spectral areas and ratios classifier algorithm for pancreatic tissue classification using optical spectroscopy,” J. Biomed. Opt. 15(1), 010514 (2010). [CrossRef] [PubMed]
  15. R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M. A. Mycek, “Optical spectroscopy detects histological hallmarks of pancreatic cancer,” Opt. Express 17(20), 17502–17516 (2009). [CrossRef] [PubMed]
  16. M. Chandra, K. Vishwanath, G. D. Fichter, E. Liao, S. J. Hollister, and M.-A. Mycek, “Quantitative molecular sensing in biological tissues: an approach to non-invasive optical characterization,” Opt. Express 14(13), 6157–6171 (2006). [CrossRef] [PubMed]
  17. J. D. Pitts and M.-A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution,” Rev. Sci. Instrum. 72(7), 3061–3072 (2001). [CrossRef]
  18. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008). [CrossRef] [PubMed]
  19. T. Imamura, H. Iguchi, T. Manabe, G. Ohshio, T. Yoshimura, Z. H. Wang, H. Suwa, S. Ishigami, and M. Imamura, “Quantitative analysis of collagen and collagen subtypes I, III, and V in human pancreatic cancer, tumor-associated chronic pancreatitis, and alcoholic chronic pancreatitis,” Pancreas 11(4), 357–364 (1995). [CrossRef] [PubMed]
  20. B. W. Killough, C. A. Nichols, J. A. Nicholson, and T. S. Gansler, “Diagnosis of pancreatic carcinoma by fine needle aspiration cytology and computerized cytomorphometry,” Anal. Quant. Cytol. Histol. 11(4), 238–242 (1989). [PubMed]
  21. A. R. Weger and J. L. Lindholm, “Discrimination of pancreatic adenocarcinomas from chronic pancreatitis by morphometric analysis,” Pathol. Res. Pract. 188(1-2), 44–48 (1992). [PubMed]
  22. F. Lin and G. Staerkel, “Cytologic criteria for well differentiated adenocarcinoma of the pancreas in fine-needle aspiration biopsy specimens,” Cancer 99(1), 44–50 (2003). [CrossRef] [PubMed]
  23. P. M. Pour, Y. Konishi, G. Klöppel, and D. S. Longnecker, Atlas of exocrine pancreatic tumors (Springer-Verlag, Tokyo, 1994).
  24. K. Vishwanath and M.-A. Mycek, “Do fluorescence decays remitted from tissues accurately reflect intrinsic fluorophore lifetimes?” Opt. Lett. 29(13), 1512–1514 (2004). [CrossRef] [PubMed]
  25. K. Vishwanath and M.-A. Mycek, “Time-resolved photon migration in bi-layered tissue models,” Opt. Express 13(19), 7466–7482 (2005). [CrossRef] [PubMed]
  26. K. Vishwanath, B. W. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47(18), 3387–3405 (2002). [CrossRef] [PubMed]
  27. A. C. Koong, V. K. Mehta, Q. T. Le, G. A. Fisher, D. J. Terris, J. M. Brown, A. J. Bastidas, and M. Vierra, “Pancreatic tumors show high levels of hypoxia,” Int. J. Radiat. Oncol. Biol. Phys. 48(4), 919–922 (2000). [CrossRef] [PubMed]
  28. S. Kersting, R. Konopke, F. Kersting, A. Volk, M. Distler, H. Bergert, H.-D. Saeger, R. Grützmann, and A. Bunk, “Quantitative perfusion analysis of transabdominal contrast-enhanced ultrasonography of pancreatic masses and carcinomas,” Gastroenterology 137(6), 1903–1911 (2009). [CrossRef] [PubMed]
  29. J. C. Finlay and T. H. Foster, “Effect of pigment packaging on diffuse reflectance spectroscopy of samples containing red blood cells,” Opt. Lett. 29(9), 965–967 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited