OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s

Branislav Grajciar, Yves Lehareinger, Adolf F. Fercher, and Rainer A. Leitgeb  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 21841-21850 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1417 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we present an ultra high speed and highly phase sensitive line-field FD-OCT system for quantitative phase mapping. The system works with a maximum speed of 512 000 A-scan/s (1000 fps) in real time mode. Along the parallel recorded direction excellent phase stability corresponding to a path length variation of only 510 pm was measured. We demonstrate how to exploit this phase accuracy for fast chemical analysis of glucose mixture processes. The system has particular potential for studying micro-fluidic processes.

© 2010 OSA

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(280.1545) Remote sensing and sensors : Chemical analysis
(180.1655) Microscopy : Coherence tomography

ToC Category:

Original Manuscript: July 28, 2010
Revised Manuscript: September 14, 2010
Manuscript Accepted: September 20, 2010
Published: September 29, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Branislav Grajciar, Yves Lehareinger, Adolf F. Fercher, and Rainer A. Leitgeb, "High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s," Opt. Express 18, 21841-21850 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. Rogers and V. I. Gelfand, “Membrane trafficking, organelle transport, and the cytoskeleton,” Curr. Opin. Cell Biol. 12(1), 57–62 (2000). [CrossRef] [PubMed]
  2. D. S. Coffey, J. P. Karr, R. G. Smith, and D. J. Tindall, “Molecular and cellular biology of prostate cancer,” Plenum, New York (1991).
  3. K. Strange, “Cellular and molecular physiology of cell volume regulation,” CRC Press, Boca Raton, Fla. (1993).
  4. T. Vo-Dinh, “Biomedical Photonics Handbook,” CRC Press, (2003).
  5. G. Popescu, in “Methods in Cell Biology,” P. J. Bhanu, ed.Elsevier, (2008). [PubMed]
  6. D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1, 347–353 (2010). http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-2-347 [CrossRef] [PubMed]
  7. Z. Wang, I. S. Chun, X. Li, Z. Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett. 35(2), 208–210 (2010). [CrossRef] [PubMed]
  8. K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, “Simple interferometric microscopy for in situ real-time two-dimensional observation of crystal growth,” Rev. Sci. Instrum. 67(7), 2584 (1996). [CrossRef]
  9. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998). [CrossRef]
  10. C. K. Hitzenberger and A. F. Fercher, “Differential phase contrast in optical coherence tomography,” Opt. Lett. 24(9), 622–624 (1999). [CrossRef]
  11. C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000). [CrossRef]
  12. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889 . [CrossRef] [PubMed]
  13. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183 . [CrossRef] [PubMed]
  14. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  15. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  16. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  17. M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  18. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Phase contrast coherence microscopy based on transverse scanning,” Opt. Lett. 34(12), 1750–1752 (2009). [CrossRef] [PubMed]
  19. S. M. Bagherzadeh, B. Grajciar, C. K. Hitzenberger, M. Pircher, and A. F. Fercher, “Dispersion-based optical coherence tomography OCT measurement of mixture concentrations,” Opt. Lett. 32(20), 2924–2926 (2007). [CrossRef] [PubMed]
  20. K. V. Larin, T. Akkin, R. O. Esenaliev, M. Motamedi, and T. E. Milner, “Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations,” Appl. Opt. 43(17), 3408–3414 (2004). [CrossRef] [PubMed]
  21. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006). [CrossRef] [PubMed]
  22. B. Grajciar, M. Pircher, A. F. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1131 . [CrossRef] [PubMed]
  23. Y. Chen, S. W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971–1973 (2007). [CrossRef] [PubMed]
  24. D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006). [CrossRef] [PubMed]
  25. R. Hooke, “Of a new property in the air,” Micrographia, Observation LVIII, 217–219, London (1665).
  26. D. Psaltis, S. R. Quake, and Ch. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  27. K. E. Herold, and A. Rasooly, Lab-on-a-chip technology (Vol. 1): Fabrication and microfluidics (Caister Academic Press, 2009).
  28. K. E. Herold, and A. Rasooly, Lab-on-a-chip technology (Vol. 2): Biomolecular separation and analysis (Caister Academic Press, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited