OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

Artifact reduction by intrinsic harmonics of tuning fork probe for scanning near-field optical microscopy

Zhaogang Dong, Ying Zhang, Shaw Wei Kok, Boon Ping Ng, and Yeng Chai Soh  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22047-22060 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1040 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a new method to reduce the topographical artifacts in scanning near-field optical microscopy (SNOM) images. The method uses the harmonics caused intrinsically by the nonlinearity in the oscillation of the SNOM probe even when the probe is working in a normal condition without extra excitation. Using these intrinsic harmonics, the gradient of the received SNOM signal with respect to the probe motion is obtained. Then, taking advantage of a SNOM capable of simultaneously obtaining both the topographical and optical signals, topographical artifacts are calculated from the product of the gradient and the topographical signal, and then removed from the received SNOM signal. The effectiveness of the proposed method is demonstrated experimentally.

© 2010 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: August 3, 2010
Revised Manuscript: September 26, 2010
Manuscript Accepted: September 26, 2010
Published: October 4, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Zhaogang Dong, Ying Zhang, Shaw Wei Kok, Boon Ping Ng, and Yeng Chai Soh, "Artifact removal by intrinsic harmonics of tuning fork probe for scanning near-field optical microscopy," Opt. Express 18, 22047-22060 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution ? /20,” Appl. Phys. Lett. 44(7), 651–653 (1984). [CrossRef]
  2. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492–2498 (1997). [CrossRef]
  3. S. I. Bozhevolnyi, “Topographical artifacts and optical resolution in near-field optical microscopy,” J. Opt. Soc. Am. B 14(9), 2254–2259 (1997). [CrossRef]
  4. J.-J Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56(3), 133–137 (1997). [CrossRef]
  5. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J.-J Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82(2), 501–509 (1997). [CrossRef]
  6. P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illuminationmode scanning near-field optical microscopy,” J. Appl. Phys. 86(1), 648–656 (1999). [CrossRef]
  7. P. G. Gucciardi and M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79(10), 1543–1545 (2001). [CrossRef]
  8. A. Bek, R. Vogelgesang, and K. Kern, “Optical nonlinearity versus mechanical anharmonicity contrast in dynamic mode apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 87(16), 163115 (2005). [CrossRef]
  9. L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006). [CrossRef]
  10. P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007). [CrossRef]
  11. B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, “Influence of detection conditions on near-field optical imaging,” J. Appl. Phys. 84(11), 5873–5882 (1998). [CrossRef]
  12. C. E. Jordan, S. J. Stranick, L. J. Richter, and R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785–2789 (1999). [CrossRef]
  13. J-H Park, M. R. Kim, and W. Jhe, “Resolution enhancement in a reflection mode near-field optical microscope by second-harmonic modulation signals,” Opt. Lett. 25(9), 628–630 (2000). [CrossRef]
  14. K. Karrai and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Ultramicroscopy 61(1-4), 197–205 (1995). [CrossRef]
  15. M. R. Spiegel and J. Liu, Mathematical handbook of formulas and table (2nd Edition, McGraw-Hill, New York, 1999).
  16. B. P. Ng, Y. Zhang, S.W. Kok, and Y. C. Soh, “Improve performance of scanning probe microscopy by balancing tuning fork prongs,” Ultramicroscopy 109(4), 291–295 (2009). [CrossRef] [PubMed]
  17. Z. Liu, Y. Zhang, S. W. Kok, B. P. Ng, and Y. C. Soh, “Near-field ellipsometry for thin film characterization,” Opt. Express 18(4), 3298–3310 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3298. [CrossRef] [PubMed]
  18. J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92(10), 6211–6214 (2002). [CrossRef]
  19. R. Carminati and J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12(12), 2716–2725 (1995). [CrossRef]
  20. P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schotland, “Computational lens for the near field,” Phys. Rev. Lett. 92(16), 163903 (2004). [CrossRef] [PubMed]
  21. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, 2006).
  22. P. B. Johnson and R.W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974). [CrossRef]
  23. P. Albertos and A. Sala, Multivariable control systems: an engineering approach (Springer Press, London, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited