OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation

Mike Woerdemann, Konrad Berghoff, and Cornelia Denz  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22348-22357 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1077 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Counter-propagating optical traps are widely used where long working distances, axially symmetric trapping potentials, or standing light waves are required. We demonstrate that optical phase-conjugation can automatically provide a counter-propagating replica of a wide range of incident light fields in an optical trapping configuration. The resulting counter-propagating traps are self-adjusting and adapt dynamically to changes of the input light field. It is shown that not only single counter-propagating traps can be implemented by phase-conjugation, but also structured light fields can be used. This step towards more complex traps enables advanced state-of-the-art applications where multiple traps or other elaborated trapping scenarios are required. The resulting traps cannot only be used statically, but they can be rearranged in real-time and allow for interactive dynamic manipulation.

© 2010 OSA

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(070.5040) Fourier optics and signal processing : Phase conjugation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: July 28, 2010
Revised Manuscript: August 27, 2010
Manuscript Accepted: August 28, 2010
Published: October 7, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Mike Woerdemann, Konrad Berghoff, and Cornelia Denz, "Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation," Opt. Express 18, 22348-22357 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000). [CrossRef]
  2. K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nanotoday 1(1), 18–27 (2006).
  3. M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. (to be published). [PubMed]
  4. F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3(7), 468–475 (2010) http://onlinelibrary.wiley.com/doi/10.1002/adma.201001453/abstract . [CrossRef]
  5. D. Altman, H. L. Sweeney, and J. A. Spudich, “The mechanism of myosin VI translocation and its load-induced anchoring,” Cell 116(5), 737–749 (2004). [CrossRef] [PubMed]
  6. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001). [CrossRef]
  7. R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002). [PubMed]
  8. M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009). [CrossRef]
  9. G. J. Brouhard, H. T. Schek, and A. J. Hunt, “Advanced optical tweezers for the study of cellular and molecular biomechanics,” IEEE Trans. Biomed. Eng. 50, 121 (2003). [CrossRef] [PubMed]
  10. K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993). [CrossRef] [PubMed]
  11. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  12. M. Petrovic, M. Beli, C. Denz, and Y. S. Kivshar, “Counterpropagating optical beams and solitons,” Laser Photon. Rev. (to be published).
  13. A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008). [CrossRef]
  14. P. Zemánek, A. Jonás, L. Srámek, and M. Liska, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24(21), 1448–1450 (1999). [CrossRef]
  15. J. S. Dam, P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, “Fully automated beam-alignment and single stroke guided manual alignment of counter-propagating multi-beam based optical micromanipulation systems,” Opt. Express 15(13), 7968–7973 (2007). [CrossRef] [PubMed]
  16. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86(7), 074103 (2005). [CrossRef]
  17. R. A. Fisher, ed., Optical Phase Conjugation (Academic Press, Inc., 1983).
  18. W. Wang, A. E. Chiou, G. J. Sonek, and M. W. Berns, “Self-aligned dual-beam optical laser trap using photorefractive phase conjugation,” J. Opt. Soc. Am. B 14(4), 697 (1997). [CrossRef]
  19. G. S. He, “Optical phase conjugation: principles, techniques, and applications,” Prog. Quantum Electron. 26(3), 131–191 (2002). [CrossRef]
  20. J. Feinberg and R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5(12), 519 (1980). [CrossRef] [PubMed]
  21. M. Woerdemann, C. Alpmann, and C. Denz, “Self-pumped phase conjugation of light beams carrying orbital angular momentum,” Opt. Express 17(25), 22791–22799 (2009). [CrossRef]
  22. P. Xie, J. H. Dai, P. Y. Wang, and H. J. Zhang, “Self-pumped phase conjugation in photorefractive crystals: Reflectivity and spatial fidelity,” Phys. Rev. A 55(4), 3092–3100 (1997). [CrossRef]
  23. M. Cronin-Golomb, “Nonlinear optics and phase conjugation in photorefractive materials,” J. Cryst. Growth 109(1-4), 340 (1991). [CrossRef]
  24. E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998). [CrossRef]
  25. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000). [CrossRef]
  26. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999). [CrossRef] [PubMed]
  27. D. Rytz, R. R. Stephens, B. A. Wechsler, M. S. Keirstead, and T. M. Baer, “Efficient self-pumped phase conjugation at near-infrared wavelengths using cobalt-doped BaTiO3,” Opt. Lett. 15(22), 1279–1281 (1990). [CrossRef] [PubMed]
  28. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13(10), 3777–3786 (2005). [CrossRef] [PubMed]
  29. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (814 KB)     
» Media 2: AVI (63 KB)     
» Media 3: AVI (84 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited