OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Phase from chromatic aberrations

Laura Waller, Shan Shan Kou, Colin J. R. Sheppard, and George Barbastathis  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 22817-22825 (2010)
http://dx.doi.org/10.1364/OE.18.022817


View Full Text Article

Enhanced HTML    Acrobat PDF (1096 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that phase objects may be computed accurately from a single color image in a brightfield microscope, with no hardware modification. Our technique uses the chromatic aberration that is inherent to every lens-based imaging system as a phase contrast mechanism. This leads to a simple and inexpensive way of achieving single-shot quantitative phase recovery by a modified Transport of Intensity Equation (TIE) solution, allowing real-time phase imaging in a traditional microscope.

© 2010 OSA

OCIS Codes
(100.5070) Image processing : Phase retrieval
(180.0180) Microscopy : Microscopy

ToC Category:
Image Processing

History
Original Manuscript: August 17, 2010
Revised Manuscript: September 26, 2010
Manuscript Accepted: October 7, 2010
Published: October 13, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Laura Waller, Shan Shan Kou, Colin J. R. Sheppard, and George Barbastathis, "Phase from chromatic aberrations," Opt. Express 18, 22817-22825 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-22-22817


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955). [CrossRef] [PubMed]
  2. C. J. R. Sheppard, “Defocused transfer function for a partially coherent microscope and application to phase retrieval,” J. Opt. Soc. Am. A 21(5), 828–831 (2004). [CrossRef]
  3. H. Hopkins, “The frequency response of a defocused optical system,” Proc. Royal Soc. London, Ser. A 231(1184), 91–103 (1955). [CrossRef]
  4. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942). [CrossRef]
  5. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005). [CrossRef] [PubMed]
  6. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004). [CrossRef] [PubMed]
  7. J. Millerd, N. Brock, J. Hayes, M. North-Morris, B. Kimbrough, and J. Wyant, Fringe 2005: Pixelated Phase-mask Dynamic Interferometers (Springer, 2003).
  8. B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001). [PubMed]
  9. X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18(16), 16685–16701 (2010). [CrossRef] [PubMed]
  10. L. Waller, and G. Barbastathis, “Phase from Defocused Color Images,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThR3.
  11. M. Born, and E. Wolf, Principles of Optics (Cambridge Univ. Press, 1999).
  12. H. King, The History of the Telescope (Dover, 2003).
  13. M. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. A 73, 1434–1441(1983). [CrossRef]
  14. D. Paganin and K. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998). [CrossRef]
  15. E. D. Barone-Nugent, A. Barty, and K. A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206(Pt 3), 194–203 (2002). [CrossRef] [PubMed]
  16. N. Streibl, “Phase imaging by the transport of equation of intensity,” Opt. Commun. 49(1), 6–10 (1984). [CrossRef]
  17. L. Waller, Y. Luo, S.-Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35(17), 2961–2963 (2010). [CrossRef] [PubMed]
  18. S. S. Kou, L. Waller, G. Barbastathis, and C. J. Sheppard, “Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging,” Opt. Lett. 35(3), 447–449 (2010). [CrossRef] [PubMed]
  19. L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010). [CrossRef] [PubMed]
  20. M. Beleggia, M. Schofield, V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102, 37–49 (2004). [CrossRef] [PubMed]
  21. J. Goodman, Introduction to Fourier Optics, (McGraw-Hill, 1996).
  22. B. Saleh, and M. Teich, Fundamentals of Photonics (John Wiley & Sons, 2010).
  23. T. Gureyev and S. Wilkins, “On X-ray phase retrieval from polychromatic images," Opt. Commun. 147, 229–232 (1998) (Erratum: Opt. Commun. 154, 391). [CrossRef]
  24. T. E. Gureyev, S. Mayo, S. W. Wilkins, D. Paganin, and A. W. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy X rays,” Phys. Rev. Lett. 86(25), 5827–5830 (2001). [CrossRef] [PubMed]
  25. M. A. Anastasio, Q. Xu, and D. Shi, “Multispectral intensity diffraction tomography: single material objects with variable densities,” J. Opt. Soc. Am. A 26(2), 403–412 (2009). [CrossRef]
  26. G. Strang, Computational Science and Engineering (Wellesley-Cambridge Press, 2010).
  27. L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1-4), 65–75 (2001). [CrossRef]
  28. N. Loomis, L. Waller, G. Barbastathis, “High-speed phase recovery using chromatic transport of intensity computation in graphics processing units,” Proc. Digital Holography meeting of the OSA: JMA7 (2010).
  29. G. Molesini and F. Quercioli, “Pseudocolor effects of longitudinal chromatic aberration,” J. Opt. (Paris) 17, 279–282 (1986).
  30. J. S. Courtney-Pratt and R. L. Gregory, “Microscope with enhanced depth of field and 3-D capability,” Appl. Opt. 12(10), 2509–2519 (1973). [CrossRef] [PubMed]
  31. T. Bifano, R. K. Mali, J. K. Dorton, J. A. Perreault, N. Vandelli, M. N. Horenstein, and D. A. Castanon, “Continuous-membrane silicon deformable mirror,” Opt. Eng. 36, 1354–1360 (1997). [CrossRef]
  32. A. M. Zysk, R. W. Schoonover, P. S. Carney, and M. A. Anastasio, “Transport of intensity and spectrum for partially coherent fields,” Opt. Lett. 35(13), 2239–2241 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPEG (1863 KB)      QuickTime
» Media 2: MPEG (1076 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited