OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Photothermal nanoblade for patterned cell membrane cutting

Ting-Hsiang Wu, Tara Teslaa, Michael A. Teitell, and Pei-Yu Chiou  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23153-23160 (2010)
http://dx.doi.org/10.1364/OE.18.023153


View Full Text Article

Enhanced HTML    Acrobat PDF (964 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells.

© 2010 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(350.5340) Other areas of optics : Photothermal effects
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 3, 2010
Revised Manuscript: September 20, 2010
Manuscript Accepted: September 21, 2010
Published: October 19, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Ting-Hsiang Wu, Tara Teslaa, Michael A. Teitell, and Pei-Yu Chiou, "Photothermal nanoblade for 
patterned cell membrane cutting," Opt. Express 18, 23153-23160 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-22-23153


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express 16(5), 3021–3031 (2008). [CrossRef] [PubMed]
  2. N. Kudo, K. Okada, and K. Yamamoto, “Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells,” Biophys. J. 96(12), 4866–4876 (2009). [CrossRef] [PubMed]
  3. S.-W. Han, C. Nakamura, N. Kotobuki, I. Obataya, H. Ohgushi, T. Nagamune, and J. Miyake, “High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy,” Nanomed. Nanotechnol. Biol. Med. 4(3), 215–225 (2008). [CrossRef]
  4. Y. Zhang, “Microinjection technique and protocol to single cells,” Nature Protocols ( http://www.natureprotocols.com/2007/11/02/microinjection_technique_and_p.php ).
  5. G. Chu, H. Hayakawa, and P. Berg, “Electroporation for the efficient transfection of mammalian cells with DNA,” Nucleic Acids Res. 15(3), 1311–1326 (1987). [CrossRef] [PubMed]
  6. S. Mitragotri, “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nat. Rev. Drug Discov. 4(3), 255–260 (2005). [CrossRef] [PubMed]
  7. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002). [CrossRef] [PubMed]
  8. A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). [CrossRef]
  9. I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006). [CrossRef] [PubMed]
  10. J. Stephens, S. K. Mohanty, S. Genc, X. Kong, K. Yokomori, and M. W. Berns, “Spatially sculpted laser scissors for study of DNA damage and repair,” J. Biomed. Opt. 14(5), 054004 (2009). [CrossRef] [PubMed]
  11. D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006). [CrossRef] [PubMed]
  12. C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003). [CrossRef] [PubMed]
  13. T.-H. Wu, S. Kalim, C. Callahan, M. A. Teitell, and P.-Y. Chiou, “Image patterned molecular delivery into live cells using gold particle coated substrates,” Opt. Express 18(2), 938–946 (2010). [CrossRef] [PubMed]
  14. S. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, and H.-R. Tseng, “Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells,” Angew. Chem. Int. Ed. Engl. 49(22), 3777–3781 (2010). [CrossRef] [PubMed]
  15. T.-H. Wu, P.-Y. Tseng, S. Kalim, M. A. Teitell, and P.-Y. Chiou, “A novel single-cell surgery tool using photothermal effects of metal nanoparticles,” Optical MEMS and Nanophotonics, 2007 IEEE/LEOS International Conference on, 43–44 (2007).
  16. E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 85102 (2010). [CrossRef] [PubMed]
  17. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999). [CrossRef]
  18. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  19. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006). [CrossRef] [PubMed]
  20. P. Marmottant and S. Hilgenfeldt, “Controlled vesicle deformation and lysis by single oscillating bubbles,” Nature 423(6936), 153–156 (2003). [CrossRef] [PubMed]
  21. M. Lokhandwalla and B. Sturtevant, “Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields,” Phys. Med. Biol. 46(2), 413–437 (2001). [CrossRef] [PubMed]
  22. A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J Biophotonics 1(1), 24–35 (2008). [CrossRef]
  23. D. W. Lynch, and W. R. Hunter, Introduction to the data for several metals. Handbook of optical constants of solids III (Academic Press, San Diego, CA, 1998).
  24. S. Passey, S. Pellegrin, and H. Mellor, “Scanning electron microscopy of cell surface morphology,” Curr. Protoc. Cell Biol. 37, 4.17.11–14.17.13 (2007). [CrossRef]
  25. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010). [CrossRef] [PubMed]
  26. R. A. Steinhardt, “The mechanisms of cell membrane repair: A tutorial guide to key experiments,” Ann. N. Y. Acad. Sci. 1066, 152–165 (2005). [CrossRef]
  27. P. Benjamin and C. Weaver, “The adhesion of evaporated metal films on glass,” Proc. R. Soc. Lond. A Math. Phys. Sci. 261(1307), 516–531 (1961). [CrossRef]
  28. V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22(19), 8151–8155 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited